Document Type
Article
Publication Date
4-6-2024
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl. (DNL) is a traditional Chinese ethnobotanical herb. Dendrobine (DNE) has been designated as a quality indicator for DNL in the Chinese Pharmacopoeia. DNE exhibits various pharmacological activities, including the reduction of blood lipids, regulation of blood sugar levels, as well as anti-inflammatory and antioxidant properties.
AIM OF THE STUDY: The objective of this study is to explore the impact of DNE on lipid degeneration in nonalcoholic fatty liver disease (NAFLD) liver cells and elucidate its specific mechanism. The findings aim to offer theoretical support for the development of drugs related to DNL.
MATERIALS AND METHODS: We utilized male C57BL/6J mice, aged 6 weeks old, to establish a NAFLD model. This model allowed us to assess the impact of DNE on liver pathology and lipid levels in NAFLD mice. We investigated the mechanism of DNE's regulation of lipid metabolism through RNA-seq analysis. Furthermore, a NAFLD model was established using HepG2 cells to further evaluate the impact of DNE on the pathological changes of NAFLD liver cells. The potential mechanism of DNE's improvement was rapidly elucidated using HT-qPCR technology. These results were subsequently validated using mouse liver samples. Following the in vitro activation or inhibition of PPARα function, we observed changes in DNE's ability to ameliorate pathological changes in NAFLD hepatocytes. This mechanism was further verified through RT-qPCR and Western blot analysis.
RESULTS: DNE demonstrated a capacity to enhance serum TC, TG, and liver TG levels in mice, concurrently mitigating liver lipid degeneration. RNA-seq analysis unveiled that DNE primarily modulates the expression of genes related to metabolic pathways in mouse liver. Utilizing HT-qPCR technology, it was observed that DNE markedly regulates the expression of genes associated with the PPAR signaling pathway in liver cells. Consistency was observed in the in vivo data, where DNE significantly up-regulated the expression of PPARα mRNA and its protein level in mouse liver. Additionally, the expression of fatty acid metabolism-related genes (ACOX1, CPT2, HMGCS2, LPL), regulated by PPARα, was significantly elevated following DNE treatment. In vitro experiments further demonstrated that DNE notably ameliorated lipid deposition, peroxidation, and inflammation levels in NAFLD hepatocytes, particularly when administered in conjunction with fenofibrate. Notably, the PPARα inhibitor GW6471 attenuated these effects of DNE.
CONCLUSIONS: In summary, DNE exerts its influence on the expression of genes associated with downstream fat metabolism by regulating PPARα. This regulatory mechanism enhances liver lipid metabolism, mitigates lipid degeneration in hepatocytes, and ultimately ameliorates the pathological changes in NAFLD hepatocytes.
Publication Title
Journal of Ethnopharmacology
Volume
323
PubMed ID
38171466
Recommended Citation
Xu, Yanzhe; Wang, Miao; Luo, Yi; Liu, Hao; Ling, Hua; He, Yuqi; and Lu, Yanliu, "PPARα is one of the key targets for dendrobine to improve hepatic steatosis in NAFLD." (2024). PCOM Scholarly Works. 2250.
https://digitalcommons.pcom.edu/scholarly_papers/2250
DOI: https://doi.org/10.1016/j.jep.2023.117684
Comments
This article was published in Journal of Ethnopharmacology.
The published version is available at https://doi.org/10.1016/j.jep.2023.117684.
Copyright © 2024 The Authors. CC BY 4.0.