Cluster-Dependent Charge-Transfer Dynamics in Iron-Sulfur Proteins.
Document Type
Article
Publication Date
1-24-2018
Abstract
Photoinduced charge-transfer dynamics and the influence of cluster size on the dynamics were investigated using five iron-sulfur clusters: the 1Fe-4S cluster in Pyrococcus furiosus rubredoxin, the 2Fe-2S cluster in Pseudomonas putida putidaredoxin, the 4Fe-4S cluster in nitrogenase iron protein, and the 8Fe-7S P-cluster and the 7Fe-9S-1Mo FeMo cofactor in nitrogenase MoFe protein. Laser excitation promotes the iron-sulfur clusters to excited electronic states that relax to lower states. The electronic relaxation lifetimes of the 1Fe-4S, 8Fe-7S, and 7Fe-9S-1Mo clusters are on the picosecond time scale, although the dynamics of the MoFe protein is a mixture of the dynamics of the latter two clusters. The lifetimes of the 2Fe-2S and 4Fe-4S clusters, however, extend to several nanoseconds. A competition between reorganization energies and the density of electronic states (thus electronic coupling between states) mediates the charge-transfer lifetimes, with the 2Fe-2S cluster of Pdx and the 4Fe-4S cluster of Fe protein lying at the optimum leading to them having significantly longer lifetimes. Their long lifetimes make them the optimal candidates for long-range electron transfer and as external photosensitizers for other photoactivated chemical reactions like solar hydrogen production. Potential electron-transfer and hole-transfer pathways that possibly facilitate these charge transfers are proposed.
Publication Title
Biochemistry
PubMed ID
29303562
Recommended Citation
Mao, Ziliang; Liou, Shu-Hao; Khadka, Nimesh; Jenney, Francis; Goodin, David B; Seefeldt, Lance C; Adams, Michael W W; Cramer, Stephen P; and Larsen, Delmar S, "Cluster-Dependent Charge-Transfer Dynamics in Iron-Sulfur Proteins." (2018). PCOM Scholarly Works. 1898.
https://digitalcommons.pcom.edu/scholarly_papers/1898
Comments
This article was published in Biochemistry.
The published version is available at https://doi.org/10.1021/acs.biochem.7b01159.
Copyright © 2018.