RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis
Document Type
Article
Publication Date
2007
Abstract
A major cause of implant failure in skeletal tissues is failure of osseointegration, often due to lack of adhesion of cells to the titanium (Ti) alloy interface. Since arginine-glycine-aspartic acid (RGD)-containing peptides have been shown to regulate osteoblast adhesion, we tested the hypothesis that, bound to a Ti surface, these peptides would promote osteoblasts differentiation, while at the same time inhibit apoptosis. RGDS and RGES (control) peptides were covalently linked to Ti discs using an APTS linker. While the grafting of both RGDS and RGES significantly increased Ti surface roughness, contact angle analysis showed that APTS significantly increased the surface hydrophobicity; when the peptides were tethered to Ti, this was reduced. To evaluate attachment, MC3T3-E1 osteoblast cells were grown on these discs. Significantly more cells attached to the Ti-grafted RGDS then the Ti-grafted RGES control. Furthermore, expression of the osteoblasts phenotype was significantly enhanced on the Ti-grafted RGDS surface. When cells attached to the Ti-grafted RGDS were challenged with staurosporine, an apoptogen, there was significant inhibition of apoptosis; in contrast, osteoblasts adherent to the Ti-grafted RGES were killed. It is concluded that RGD-containing peptides covalently bonded to Ti promotes osteoblasts attachment and survival with minimal changes to the surface of the alloy. Therefore, such modifications to Ti would have the potential to promote osseointegration in vivo. © 2007 Wiley Periodicals, Inc.
Publication Title
Journal of Biomedical Materials Research - Part A
Volume
83
Issue
3
First Page
577
Last Page
584
Recommended Citation
Secchi, A. G.; Grigoriou, V.; Shapiro, I. M.; Cavalcanti-Adam, E. A.; Composto, R. J.; Ducheyne, P.; and Adams, Christopher S., "RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis" (2007). PCOM Scholarly Works. 1586.
https://digitalcommons.pcom.edu/scholarly_papers/1586
Comments
This article was published in Journal of Biomedical Materials Research - Part A, Volume 83, Issue 3, Pages 577-584.
The published version is available at http://dx.doi.org/10.1002/jbm.a.31007.Copyright © 2007.