Bigendothelin-1 (1-21) fragment during early sepsis modulates tau, p38-MAPK phosphorylation and nitric oxide synthase activation

Document Type


Publication Date



Earlier we have demonstrated that inhibition of endothelin biosynthesis ameliorates endotoxemia-induced inducible nitric oxide synthase (iNOS) activation and phosphorylation of p38-mitogen activated protein kinase (pp38-MAPK). Therefore, in the present study, we tested the hypothesis that activation of endothelin (ET)-1 biosynthesis using bigET-1 during early sepsis would upregulate iNOS and affect myocardial function in the rat. Male Sprague-Dawley rats (350-400 g) were anesthetised using Nembutal® (50 mg/kg, i.p.) and jugular vein, tail artery (Mean arterial pressure, MAP) and right carotid arteries (advanced to left ventricle, LV) were cannulated. The rats were randomly divided into saline-, bigET-1- and C-terminal fragment of bigET-1(bigET-1(22-38))-treated groups. Sepsis was induced using i.p. injection of cecal inoculum obtained from a donor rat (200 mg/kg in 5 ml 5% sterile dextrose water, D 5W). Sham animals received an i.p. injection of D 5W (5 ml/kg). MAP and LVP were recorded and cardiodynamic parameters were calculated at 0, 2, 6, 12 and 24 h post sham or sepsis-induction. A significant elevation in LV isovolumic relaxation rate constant (tau), LV end diastolic pressure (LVEDP) and rate pressure product (RPP) was observed in vehicle-treated septic group at 24 h. BigET-1 significantly increased concentration of LV ET-1 both in sham and septic groups. BigET-1 elevated tau and LVEDP both in sham and septic animals as early as 12 h which persisted through 24 h. However, bigET-1(22-38) elevated LVEDP in septic group at 24 h but not in sham group. BigET-1 accentuated the levels of plasma nitric oxide byproduct (NOx) levels in both sham and septic animals at 6, 12 and 24 h. Sepsis increased myocardial iNOS at 24 h. BigET-1 significantly upregulated expression of myocardial iNOS and pp38-MAPK. The data suggest that increased substrate availability for ET-1 at the time of sepsis-induction contributes in diastolic dysfunction, iNOS activation and p38-MAPK phosphorylation. © Springer 2005.

Publication Title

Molecular and cellular biochemistry





First Page


Last Page



This article was published in Molecular and cellular biochemistry, Volume 271, Issue 42006, Pages 225-237.

The published version is available at http://dx.doi.org/10.1007/s11010-005-6416-3.

Copyright © 2005 Springer.

This document is currently not available here.