Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function

Document Type


Publication Date



This article reports that surface modification of poly(dimethylsiloxane) (PDMS) influences fibronectin (Fn) adsorption and enhances cell attachment. Controlled adsorption of Fn on chemically activated polymer substrates is known to influence cellular function. Thin films of PDMS were spun cast on silicon wafers to obtain homogeneous and molecularly smooth surfaces. The films were made hydrophilic by exposure to ultraviolet ozone activation (PDMS*). The films then were characterized by contact angle goniometry, ellipsometry, atomic force microscopy (AFM). Rutherford backscattering spectrometry and X-ray photoelectron spectroscopy. Contact angle measurements indicated higher hydrophobicity of the nonactivated PDMS substrates than PDMS*. AFM scans of the substrates indicated higher surface roughness of PDMS* (Ra = 0.55 nm) than PDMS (Ra = 0.25 nm). Although Fn surface density (Γ) was slightly higher on PDMS than on PDMS*, due to hydrophobic interactions between substrate and Fn, cell function was greatly enhanced on the Fn-coated PDMS* (PDMS*-Fn) than on PDMS (PDMS-Fn). Higher attachment of MC3T3-E1 osteoblast-like cells was observed on PDMS*-Fn than on PDMS-Fn. Moreover, cell spreading and cytoskeleton organization after 72 h was clearly favored on the Fn-coated PDMS* surfaces. © 2004 Wiley Periodicals, Inc.

Publication Title

Journal of Biomedical Materials Research - Part A





First Page


Last Page



This article was published in Journal of Biomedical Materials Research - Part A, Volume 71, Issue 3, Pages 449-461.

The published version is available at

Copyright © 2004.

This document is currently not available here.