RGD peptides immobilized on a mechanically deformable surface promote osteoblast differentiation
Document Type
Article
Publication Date
2002
Abstract
The major objective of this work was to attach bone cells to a deformable surface for the effective transmission of force. We functionalized a silastic membrane and treated it with 3-aminopropyltriethoxysilane (APTS). A minimal RGD peptide was then covalently linked to the aminated surface. MC3T3-E1 osteoblast-like cells were cultured on the arginine-glycine-aspartic acid (RGD)-treated membrane for 3-15 days and cell attachment and proliferation was evaluated. We observed that cells were immediately bound to the membrane and proliferated. After 8 days on the material surface, osteoblasts exhibited high levels of ALP staining, indicating that the cells were undergoing maturation. Alizarin red staining and Fourier transform infrared (FTIR) analysis showed that the mineral formed by the cells was a biological apatite. The second objective was to apply a mechanical force to cells cultured on the modified silicone membrane. Dynamic equibiaxial strain, 2% magnitude, and a 0.25-Hz frequency were applied to bone cells for 2 h. Osteoblasts elicited increased phalloidin fluorescence, suggesting that there was reorganization of the cytoskeleton. Furthermore, the applied strain elicited increased expression of the αvβ3 integrin receptor. We concluded that the covalent binding of RGD peptides to a silicone membrane provides a compatible surface for the attachment and subsequent differentiation of osteoblasts. Moreover, the engineered surface transduces applied mechanical forces directly to the adherent cells via integrin receptors.
Publication Title
Journal of Bone and Mineral Research
Volume
17
Issue
12
First Page
2130
Last Page
2140
Recommended Citation
Cavalcanti-Adam, E. A.; Shapiro, I. M.; Composto, R. J.; Macarak, E. J.; and Adams, Christopher S., "RGD peptides immobilized on a mechanically deformable surface promote osteoblast differentiation" (2002). PCOM Scholarly Works. 1559.
https://digitalcommons.pcom.edu/scholarly_papers/1559
Comments
This article was published in Journal of Bone and Mineral Research, Volume 17, Issue 12, Pages 2130-2140.
The published version is available at http://dx.doi.org/10.1359/jbmr.2002.17.12.2130 .Copyright © 2002.