Title

Localization of the high and low affinity [3H]ryanodine binding sites on the skeletal muscle Ca2+ release channel

Document Type

Article

Publication Date

1994

Abstract

The Ca2+ release channel of skeletal muscle sarcoplasmic reticulum is modulated in a biphasic manner by the plant alkaloid ryanodine and there are two distinct binding sites on this channel for ryanodine. The Ca2+ release channel is a homotetramer with a subunit of 5037 amino acids. The ability of sarcoplasmic reticulum membranes to bind [3H]ryanodine to the high affinity site is lost upon proteolysis with trypsin. [3H]Ryanodine, however, bound before proteolysis remains bound after trypsin digestion. If the high affinity site is first occupied with [3H]ryanodine and then 100 μM ryanodine is added to occupy the low affinity sites, almost all of [3H]ryanodine bound to the high affinity site remains bound after proteolysis. Proteolysis causes the solubilized Ca2+ release channel containing bound [3H]ryanodine to undergo four discrete shifts in sedimentation (30 S → 28 S → 26 S → 19 S → 14 S). Polypeptides having apparent molecular masses of 76, 66, 56, 45, 37, and 27 kDa can be identified in the 14 S complex. The 76-, 56-, 45-, and 27-kDa polypeptides have been partially sequenced from the NH2 terminus. In addition, the 76-, 66-, and 27-kDa fragments are recognized by an antibody to the last 9 amino acids at the carboxyl terminus of the skeletal muscle ryanodine receptor and the 76-, 66-, and 37-kDa fragments are recognized by an antibody to a peptide matching the sequence 4670-4685. The 56-kDa and the 45-kDa fragments are not Ca2+ release channel fragments. Both high and low affinity ryanodine binding sites are found in the 14 S complex and are, therefore, most likely located between Arg-4475 and the carboxyl terminus.

Publication Title

Journal of Biological Chemistry

Volume

269

Issue

22

First Page

15876

Last Page

15884

Comments

This article was published in Journal of Biological Chemistry, Volume 269, Issue 22, Pages 15876-15884.

The published version is available at http://www.jbc.org/.

Copyright © 1994.

This document is currently not available here.

COinS