2004

A role for Tbx5 in proepicardial cell migration during cardiogenesis

Cathy J. Hatcher
Philadelphia College of Osteopathic Medicine, cathyha@pcom.edu

Nata Diman

Minsu Kim

David Pennisi

Yan Song

See next page for additional authors

Follow this and additional works at: http://digitalcommons.pcom.edu/scholarly_papers
Part of the Genomics Commons

Recommended Citation
Hatcher, Cathy J.; Diman, Nata; Kim, Minsu; Pennisi, David; Song, Yan; Goldstien, Marsha M.; Mikawa, Takashi; and Basson, Craig T., "A role for Tbx5 in proepicardial cell migration during cardiogenesis" (2004). PCOM Scholarly Papers. Paper 511.
http://digitalcommons.pcom.edu/scholarly_papers/511

This Article is brought to you for free and open access by DigitalCommons@PCOM. It has been accepted for inclusion in PCOM Scholarly Papers by an authorized administrator of DigitalCommons@PCOM. For more information, please contact library@pcom.edu.
Authors
Cathy J. Hatcher, Nata Diman, Minsu Kim, David Pennisi, Yan Song, Marsha M. Goldstien, Takashi Mikawa, and Craig T. Basson

This article is available at DigitalCommons@PCOM: http://digitalcommons.pcom.edu/scholarly_papers/511
A role for Tbx5 in proepicardial cell migration during cardiogenesis
Cathy J. Hatcher, Nata Y.S.-G. Diman, Min-Su Kim, David Pennisi, Yan Song, Marsha M. Goldstein, Takashi Mikawa and Craig T. Basson

You might find this additional info useful...

This article cites 72 articles, 28 of which can be accessed free at:
/content/18/2/129.full.html#ref-list-1

This article has been cited by 15 other HighWire hosted articles, the first 5 are:

Tbx5 Is Required for Avian and Mammalian Epicardial Formation and Coronary Vasculogenesis
Naty Y.S.-G. Diman, Gabriel Brooks, Boudewijn P.T. Kruithof, Olivier Elemento, J.G. Seidman, Christine E. Seidman, Craig T. Basson and Cathy J. Hatcher
[Abstract] [Full Text] [PDF]

Keratin gene expression profiles after digit amputation in C57BL/6 vs. regenerative MRL mice imply an early regenerative keratinocyte activated-like state
[Abstract] [Full Text] [PDF]

Tbx18 function in epicardial development
Franziska Greulich, Henner F. Farin, Karin Schuster-Gossler and Andreas Kispert
[Abstract] [Full Text] [PDF]

Tbx18 function in epicardial development
Franziska Greulich, Henner F. Farin, Karin Schuster-Gossler and Andreas Kispert
Cardiovasc Res, August 27, 2012;
[Abstract] [Full Text] [PDF]

A Hand for the Epicardium
Brigitte Laforest and Mona Nemer
[Full Text] [PDF]

Updated information and services including high resolution figures, can be found at:
/content/18/2/129.full.html

Additional material and information about Physiological Genomics can be found at:
http://www.the-aps.org/publications/pg

This information is current as of March 18, 2015.
TRANSLATIONAL PHYSIOLOGY

A role for Tbx5 in proepicardial cell migration during cardiogenesis

Cathy J. Hatcher,1,2* Nata Y. S.-G. Diman,1,2* Min-Su Kim,1,2* David Pennisi,2 Yan Song,1,2 Marsha M. Goldstein,3 Takashi Mikawa,2 and Craig T. Basson1,2

1Molecular Cardiology Laboratory, Greenberg Cardiology Division, Department of Medicine, and 2Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10021; and 3BioReference Laboratories, Elmwood Park, New Jersey 07407

Submitted 5 March 2004; accepted in final form 7 May 2004

Hatcher, Cathy J., Nata Y. S.-G. Diman, Min-Su Kim, David Pennisi, Yan Song, Marsha M. Goldstein, Takashi Mikawa, and Craig T. Basson. A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiol Genomics 18: 129–140, 2004. First published May 11, 2004; 10.1152/physiolgenomics.00060.2004.—Transcriptional regulatory cascades during epicardial and coronary vascular development from proepicardial progenitor cells remain to be defined. We have used immunohistochemistry of human embryonic tissues to demonstrate that the Tbx5 transcription factor is expressed not only in the myocardium, but also throughout the embryonic epicardium and coronary vasculature. Tbx5 is not expressed in other human fetal vascular beds. Furthermore, immunohistochemical analyses of human embryonic tissues reveals that unlike their epicardial counterparts, delaminating epicardial-derived cells do not express Tbx5 as they migrate through the subepicardium before undergoing epithelial-mesenchymal transformation required for coronary vasculogenesis. In the chick, Tbx5 is expressed in the embryonic proepicardial organ (PEO), which is composed of the epicardial and coronary vascular progenitor cells. Retrovirus-mediated overexpression of human TBX5 inhibits cell incorporation of infected proepicardial cells into the nascent chick epicardium and coronary vasculature. Tbx5 overexpression as well as antisense-mediated knockdown of chick Tbx5 produce a cell-autonomous defect in the PEO that prevents proepicardial cell migration. Thus, both increasing and decreasing Tbx5 dosage impairs development of the proepicardium. Culture of explanted PEOs demonstrates that un-treated chick proepicardial cells downregulate Tbx5 expression during cell migration. Therefore, we propose that Tbx5 participates in regulation of proepicardial cell migration, a critical event in the establishment of the epicardium and coronary vasculature.

T-box transcription factors play critical roles in cardiovascular development. Mutations in the human Tbx5 gene cause abnormal cardiac morphogenesis in the context of autosomal dominant Holt-Oram syndrome (3, 32). Investigation of altered Tbx5 gene dosage in several animal models has demonstrated defects in cardiac septation and myocardial growth and development similar to those observed in human individuals with Holt-Oram syndrome (6, 10, 23, 34). Normal cardiogenesis may reflect local myocardial balances between expression of T-box genes (57). Recent studies have also implicated T-box transcription factors in establishment of vascular structure. Murine studies demonstrated a role for Tbx1 in aortic arch development, and loss of human TBX1 may contribute to congenital cardiovascular abnormalities in patients with Di-George syndrome who have chromosome 22q deletions encompassing the Tbx1 gene (19, 27, 36, 46). The zebrafish T-box gene hrt, a homolog of chick and mouse Tbx20, is not only required for normal myocardial development and cardiac looping, but also for formation of the dorsal aorta (25, 28, 29, 45, 66). Expression analyses suggest a potential role for Tbx18 in epicardial and vascular development, since this gene is highly expressed in the proepicardial organ (PEO) and the epicardium (28); both of these structures contribute to coronary vasculogenesis.

The PEO, a grape-like cluster of vesicles, comprises a discrete organ in the chick and a portion of the septum transversum in mammals. In the chick, the PEO initially forms as an outgrowth of the dorsal wall of the intra-embryonic coelom adjacent to the developing liver and becomes visible at the sinalotial pole of the heart at Hamburger-Hamilton (HH) stage 13 (21). Each vesicle of the PEO is composed of multiple mesothelial cells, surrounding a fluid-filled lumen. By HH stage 18, the PEO contacts myocardium via villous projections forming tissue bridges. Proepicardial cells subsequently migrate over the myocardium to form the pericardium and the epicardial monolayer (42). Between HH stages 19–23, some epithelial cells migrate out of this layer into the subepicardial matrix and nascent myocardium. These cells undergo an epithelial-to-mesenchymal cell transformation (EMT) that contributes both to valvulogenesis in the endocardial cushions (18) and to differentiation of cardiac fibroblasts, endothelial cells, and coronary smooth muscle cells, all of which can participate in formation of the coronary vasculature (49).

Genetic cues originating in the myocardium are presumed to regulate the differentiation and localization of the epicardial mesenchyme and coronary blood vessels. Several genes, including the transcription factors Tbx18 (28), Gata4 (53), and Fog2 (12, 65, 69), are expressed in the epicardium and coronary vasculature, but the molecular pathways that initiate and propagate epicardial EMT and coronary vasculogenesis remain to be delineated. Data suggest fine regulation of a balance among growth factors such as FGF and TGFβ isoforms as well as VEGF. Cell-cell and cell-matrix interactions are required, since this process requires connexin-43, VCAM-1, and α4-integrins (31, 33, 73). In addition, endothelin-mediated com-
munication between epicardial-derived cells (EPDCs) and primitive cardiomyocytes contributes to Purkinje fiber development (67). Transcriptional regulation during epicardial EMT involves WT-1, Ets transcription factors, and probably GATA transcription factors, whose roles are suggested by a requirement for Fog2 (12, 63, 69). A functional role for T-box transcription factors in epicardial EMT and coronary vasculogenesis has not yet been defined.

In this study, we demonstrate that human TBX5 is expressed in the coronary vasculature during embryogenesis and that variations in human TBX5 expression during cardiac morphogenesis correlate with activation of EPDC migration. We further analyzed the contribution of Tbx5 to proepicardial cell activity during chick cardiogenesis. Chicks Tbx5 is expressed in the PEO, and overexpression of human TBX5 inhibits cell migration out of the PEO and thereby impairs proepicardial cell contribution to the coronary vasculature. Proepicardial cell migration is altered by other perturbations in Tbx5 dosage, since antisense-mediated inhibition of Tbx5 translation also inhibits proepicardial cell migration. Notably, however, non-genetically engineered proepicardial cells repress Tbx5 expression during cell migration. Therefore, we propose that TBX5 can contribute to embryonic events that regulate proepicardial cell migration and thereby impact upon epicardial and coronary vascular development.

MATERIALS AND METHODS

Retroviral TBX5 constructs and infection of chick embryos in ovo. The CXIZ retrovirus and construction of the derivative wt-TBX5-CXIZ and Gly80Arg-TBX5-CXIZ replication-defective retroviruses, encoding wild-type and mutant TBX5 isoforms, respectively, have been previously described (23). Replication-defective viruses were propagated and titers were assayed per published protocols (23, 47, 67, 71). Ten to 100 viral particles in <10 nl containing 100 ug/ml Polybrene were pressure-injected into the PEO. PEO pressure injection was usually associated with a small amount of leakage of retrovirus into the adjacent myocardium. Eggs were resealed with Parafilm, and the embryos were maintained at 38°C until euthanasia. Euthanized embryos were fixed with 4% paraformaldehyde and stained overnight for β-galactosidase activity with X-Gal. PEO explant, transfection, and cell culture. PEOs were microdissected from embryonic chicks at HH stages 16–18 prior to migration of the PEO over the myocardium. They were carefully trimmed to ensure the absence of any possible contaminating myocardium. Explanted PEOs were maintained in culture at 37°C, 5% CO2 with DMEM media supplemented with 10% fetal bovine serum (FBS) and 2% chick serum for ≤72 h. For experiments involving overexpression of human TBX5, isolated PEOs were either infected with retrovirus or transfected with pEGFP-C1-TBX5 plasmid (11) or pEGFP-C1-TBX20 plasmid. To construct pEGFP-C1-TBX20 plasmid, human TBX20 plasmid. To construct pEGFP-C1-TBX20 plasmid, human TBX20 in Opti-MEM media (GIBCO) using Lipofectamine Plus reagent per the manufacturer’s instructions (Invitrogen). The cells were loaded 24 h later with Hoechst 33342 according to manufacturer’s protocols (Sigma) and visualized by fluorescence microscopy (Nikon Diaphot 200) using SpotFinder software.

To study the consequences of gene knockdown, isolated PEOs were cultured in 12-mm wells and transfected with morpholino (MO) antisense oligomers for cTbx5, cTbx20, or the corresponding inverted (INV) sequences of each morpholino, as follows: cTbx5-MO (5’-AGTCGTTCTCGGTCTGCAGCTCTT-3’), cTbx20-MO (5’-CGGTGTGATACCTCATGGCGAGCCC-3’), and cTbx5-MO (5’-ATTATGACCCGCTGTTGCTCTTTCCG-3’), and cTbx20-MO (5’-CCCCCGACCCGTTCTCATGTGGCC-3’). Each oligomer was covalently labeled with Lissamine (sulforhodamine B) fluorescent dye and synthesized to be used with the “Special Delivery” ethoxylated polyethylenamine (EPEI) system (Gene Tools). The cTbx5-MO and cTbx20-MO sequences were designed to include sequence (~4 to +21 and −10 to +15) flanking the cTbx5 and cTbx20 translational start sites, respectively. Morpholino-modified antisense oligomers were transfected into PEOs according to the manufacturer’s protocols and as previously described (51). Fluorescent microscopy of cultures permitted identification of transfected cells. After 3 h, transfection media was changed to fresh DMEM growth media.

Number of cells migrating out of PEOs after 24, 48, and 72 h of culture were determined by direct visualization with light microscopy. β-Galactosidase staining marked retrovirus-infected cells, and Lissamine fluorescence marked antisense oligomer transfected cells. For antisense studies, distribution of PEO cells was determined as the number of cells within 200-µm concentric rings surrounding the residual PEO explant. Statistical comparisons were made by ANOVA analysis with GB-STAT software.

Primary cultures of PEO cells were prepared using the previously described protocol for embryonic heart dispersion (30), with the exception of only one 15-min digestion with 0.5 mg/ml type II collagenase at 37°C (Worthington). To assess proliferation rates of retrovirus-infected cultured PEO cells, PEO cells were allowed to adhere to the culture surface for 3 h. For some studies, they were infected for 8 h with retroviruses and then grown for a further 13-h period in virus-free media. For other studies, cultured proepicardial cells were transfected with morpholino-modified antisense oligomers as described above. Twenty-four hours after plating collagenase-digested PEO cells, cultures either were used for RNA preparation or were fixed in 4% paraformaldehyde and underwent immunohistochemical staining with anti-β-galactosidase (ICN) and anti-PCNA (DAKO) antibodies using the LSAB2 kit with the EnVision Doublestain System (DAKO) per the manufacturer’s instructions and as previously described (23). The fraction of PCNA-positive retrovirus-infected cells (marked by β-galactosidase positivity) was determined by direct visualization under light microscopy in triplicate samples. Statistical comparisons were made by ANOVA analysis with GB-STAT software.

RT-PCR of isolated PEO. Total RNA was isolated from either whole hearts or PEOs of HH stage 16–18 chicks with TRIzol per the instructions of the manufacturer (Invitrogen). In some cases, the explanted PEOs were maintained in culture for 72 h during which time some proepicardial cells migrated out of the explant. The initial PEO explant was detached from the dish and removed, leaving surrounding migrating PEO-derived cells. These PEO-derived cells were trypsinized, pelleted by centrifugation, and total RNA was isolated from them as well as from the removed PEO explant. RT-PCR for chick Tbx5 was performed on both populations of cells. To analyze chick Tbx5 mRNA expression by RT-PCR, 500 ng RNA (analyzed) was reverse transcribed and subsequently amplified by the OneStep RT-PCR kit (Qiagen) under the following conditions: 95°C for 30 s, 55°C for 45 s, 72°C for 1 min, for 30 cycles; followed by 72°C for 10 min. The primers used to amplify this 887-bp product were as follows:
cTbx5F (5'-CTGTGGCTGAATTTACAGGAGT-3') and cTbx5R (5'-GGTAACTGGACCTGTACAAAGGAT-3'). Chick GAPDH mRNA expression was also analyzed in the same cell populations using primers 5'-AGTTCTTACACAGGACAGTCTCA-3' and 5'-CTCTATTGTCTACACAGGAAAACAG-3'. PCR products were analyzed on 2% agarose gels.

Quantitative RT-PCR. Quantitative RT-PCR was performed to assess expression levels of candidate chick genes in primary proepicardial cell cultures. Total RNA was isolated from cultures with TRIzol (Invitrogen), and cDNA was prepared from 1 µg of total RNA with the iScript cDNA synthesis kit (Bio-Rad). This cDNA served as template for real-time PCR studies using the Quantitect SYBR Green kit (Qiagen) and a Cepheid Smart Cycler. Reaction conditions were 95°C for 15 min and then 95°C for 30 s, 55°C for 30 s, and 72°C for 45 cycles. Genes analyzed and primers used were cGAPDH (5'-TGCGTCAACATGAGAATATG-3'), cTbx18 (5'-GTTGCTTACAGGATAAACCTTTT-3'), 5'-CTAAGTAACTGGACAGTCTCCACA-3'), and cTbx20 (5'-AAATTGGCGAGATGTCATACCAGGAAACAAG-3'). Primer pairs were tested in standard PCR and shown to amplify a single product by agarose gel electrophoresis prior to use in real-time PCR assays. All real-time PCR reactions were matched with non-reverse-transcribed control reactions. Data from six replicate cultures were analyzed per published protocols (13).

In vitro isolated cell migration assays. Cell migration was measured using a quantitative assay of sheet migration as previously described (4, 5, 58) that was modified. Briefly, 1.25 × 10^6 D17 canine osteosarcoma cells were infected for 48 h with 10^7 virions of CXIZ-derived retrovirus in the presence of 10 µM hydroxyurea to inhibit cell proliferation. One million cells were plated into the 10-cm central circular core of a 32-cm stainless steel circular fence (Yale Department of Biomedical Engineering) placed in a type I collagen-coated dish. After the cells attached to the dish overnight, the fence was removed. The cells were gently washed with PBS and allowed to migrate radially in culture media containing hydroxyurea. After migrating for 10 days, β-galactosidase-positive cells were visualized as previously described (23). Dishes were imaged on a flatbed scanner, and the diameter of the migrated cells was outlined and measured (Multi-Analyst software, Bio-Rad). The migration area was calculated as the diameter of cells after 10 days of migration minus the diameter of cells immediately following removal of the fence prior to the beginning of the migration assay. This value was expressed as square millimeters. Samples were analyzed in 25–30 replicate dishes, and statistical comparisons were made by ANOVA with GB-STAT software.

RNA probes and in situ hybridization. cDNA of cTbx5 was synthesized from HH stage 16–18 chick heart RNA by RT-PCR using the previously named primer pair, cTbx5F and cTbx5R. The PCR product was TA-cloned into the pcRII vector (Invitrogen) and sequenced in both directions. Sense and antisense digoxigenin-labeled RNA probes were transcribed from Xhol and SpeI linearized plasmids, respectively, according to the manufacturer’s instructions (Roche). Whole mount in situ hybridization on HH stage 16–18 chick embryos was performed as previously described (67). Following color development, embryos were paraffin embedded and sectioned at 10 µm as previously described (48).

Immunohistochemistry of human tissue. Human cardiac tissue was obtained as waste surgical pathology material from therapeutic abortions of 10 embryos at 10–15 wk gestation, with informed consent and approval of the Cornell Committee on Human Rights on Research, and tissues were prepared for immunohistochemistry as previously described (22). Tbx5 protein was detected on 5-µm sections, which were analyzed and imaged on a Nikon Microphot microscope.

RESULTS

Tbx5 expression in the human epicardium and coronary vasculature and in the chick PEo. Human embryonic tissue (10–15 wk of gestation) was analyzed by immunohistochemistry for Tbx5 expression (Fig. 1) with a previously characterized (22) antibody to Tbx5 that is directed against a specific Tbx5 sequence carboxyl to the Tbx5 T-box. In addition to...
previously described (22) expression in cardiomyocytes and atrioventricular nodal cells, marked staining for TBX5 was observed in the epicardium and coronary vasculature. TBX5 expression was observed in the coronary arterial and venous endothelium as well as in coronary arterial smooth muscle cells (Fig. 1A). TBX5 expression was not evident in vascular cells outside of the heart (Fig. 1B and C), i.e., aorta, pulmonary artery, lungs, liver, kidney, and skeletal muscle. Absence of staining with the antibody used in the developing aorta (Fig. 1C) and foot (Fig. 1D), where TBX20 and TBX18, respectively, are known to be expressed (28, 29, 45), confirmed that the anti-TBX5 antibody used does not cross-react with these other T-box genes that are expressed in some vascular cells. As demonstrated previously, specificity of the antibody was verified by reacting tissue sections with anti-TBX5 antibody preadsorbed with the TBX5 peptide immunogen; no staining was observed in these sections (data not shown) (22).

Further analyses of human embryonic tissues also suggested EPDC inactivation of TBX5 expression in association with cell migration. During cardiogenesis, a subpopulation of EPDCs migrates out of and delaminates from the epicardium and then populates the subepicardial matrix as these EPDCs interact with myocardial cells and undergo EMT (18, 49). We immunohistochemically examined human TBX5 expression in the epicardium and subepicardium during human fetal cardiac development. Compared with the marked TBX5 staining in the static epicardium or intramyocardial vasculature, the subepicardial layer of migrating EPDCs was devoid of TBX5 staining (Fig. 2); previous studies by others have suggested that this area is composed of delaminating EPDCs (18, 49).

Given the common developmental origins of the coronary vasculature and epicardium and the critical role of these cell populations in the establishment of the cardiac conduction system (18, 49), we sought to determine in the chick whether cTbx5 is expressed in the PEO. In situ hybridization with a chick Tbx5-specific riboprobe revealed specific Tbx5 expression in the developing chick PEO (Fig. 3) similar to previous findings of Tbx5 in the murine septum transversum (62). Notably, expression of Tbx5 in the PEO and primitive ventricles is lower compared with that observed in the primitive atria and wing buds. Heterogeneity of Tbx5 expression in the PEO was also observed, with the aspect in contact with the primitive atrium exhibiting the highest level of expression. In addition, PEOs, myocardium, and tail bud were microdissected from 14 HH stage 16-18 chick embryos, and RNA samples were prepared. RT-PCR demonstrated that cTbx5 is expressed not

![Fig. 2. TBX5 is not expressed in the subepicardium of the embryonic human heart. Immunostaining for TBX5 was performed in 15 wk of gestation human heart. Shown are sections through the lateral wall of the embryonic left ventricle (A and B) and through the right atrial free wall (C and D). Immunohistochemistry with anti-TBX5 is shown in A and C. Although TBX5 is expressed in epicardial, vascular, and myocardial cells, the subepicardium (*), comprised of delaminating epicardial-derived cells (EPDCs) that will ultimately form the nonmigrating vasculature, is devoid of TBX5 expression. Labels indicate epicardium (epi), myocardium (myo), arteriole (a), vein (v), vascular endothelial cells (endo), and vascular smooth muscle cells (vsmc). Hematoxylin and eosin staining of parallel sections (B and D) demonstrates the cellularity of the subepicardium. Bar = 25 μm.](image-url)
only in the myocardium but also in the PEO (Fig. 3). No cTbx5 expression was observed in the tail bud.

Overexpression of TBX5 in the PEO. To determine whether regulation of Tbx5 dose plays a role in PEO development and its progenitors, we used retrovirus-mediated transgenesis to augment Tbx5 expression in the PEO during chick development. CXIZ retroviruses encoding either β-galactosidase alone or in addition to human TBX5 isoforms (wild-type or Gly80Arg mutant) were microinjected into the PEO of HH stage 16–18 embryonic chicks in ovo. Embryos were killed and studied at embryonic day 15 (E15) by whole mount staining for β-galactosidase (Fig. 4) and light microscopy (Fig. 5). CXIZ-injected embryos exhibited β-galactosidase-positive cells in both the epicardium (Figs. 4, A–C) as well as the vascular smooth muscle and surrounding endothelium of the coronary vasculature (Figs. 5, A and B). Mosaic staining confirmed previous findings (23, 49, 71) that this retroviral strategy results in transgenesis of a portion of the targeted cells. Although epicardium and coronary vasculature did form in wt-TBX5-CXIZ-injected embryos (Fig. 4F), we did not observe significant incorporation of β-galactosidase-positive cells into these structures (Figs. 5, C and D). Microinjection of the inactive mutant Gly80Arg-TBX5-CXIZ (23) revealed a pattern of β-galactosidase-positive cell expression similar to that found in CXIZ-injected embryos (Fig. 4, D and E). Therefore, we concluded that overexpression of biologically active TBX5 specifically inhibits incorporation of proepicardial cells into epicardium and coronary vasculature.

Does TBX5 modulate proepicardial cell proliferation and migration in vitro? Because our previous studies (23) had demonstrated that TBX5 can act as a growth-arrest signal to inhibit the proliferation of several cell types including D17 cells, MEQC myc-transformed avian cardiomyocyte-like cells (26), and embryonic chick cardiomyocytes, we considered the possibility that TBX5 overexpression might inhibit the proliferation of a subset of proepicardial cells within the PEO and thereby prevent their clonal expansion and further incorporation into PEO-derived structures. However, immunostaining for PCNA in PEOs infected with either CXIZ or wt-TBX5-CXIZ both revealed evidence of proliferation in virtually all cells. To further quantitatively determine whether TBX5 overexpression altered proepicardial cell proliferation, primary cultures of proepicardial cells were established by disaggregating PEOs microdissected from HH stage 16–18 chick embryos.

Fig. 3. Analysis of cTbx5 expression in the embryonic chick heart and proepicardial organ (PEO). A: total RNA was prepared from Hamburger-Hamilton (HH) stage 16–18 embryonic chick myocardium (lane b), PEO (lane c), and tail bud (lane d). The 887-bp and 806-bp segments of the chick Tbx5 and GAPDH genes, respectively, were amplified by RT-PCR. cTbx5 is expressed in both the myocardium and PEO, but not in the tail bud. Lane a is a negative RT-PCR control in which RNA was omitted from the sample undergoing amplification. B: in situ hybridization analysis of HH stage 17 chick embryo with an antisense cTbx5-specific riboprobe. cTbx5 mRNA expression was observed in the PEO (arrow) as well as in the wing bud (w) and heart. C: embryos hybridized with a sense cTbx5 riboprobe showed no staining of the PEO (arrow). D: cross-sectional analysis of an HH stage 17 chick embryo confirmed cTbx5 expression in the PEO, as well as in the wing buds (w) and primitive atrium (a) and ventricle (v).

Fig. 4. Retrovirus-mediated expression of wild-type and mutant human TBX5 in embryonic chick PEO during heart development. CXIZ (A–C), Gly80Arg-TBX5-CXIZ (D and E), and wt-TBX5-CXIZ (F) retroviruses were microinjected into chick PEOs in ovo at HH stage 16–18. Embryos were euthanized at embryonic day 15 (E15), and whole mounts were stained (blue) for β-galactosidase. Microscopic inspection revealed widespread expression of the transgene in the epicardial cell layer (*) and underlying coronary vessels (arrows) in the CXIZ-infected (A–C) and Gly80Arg-TBX5-CXIZ-infected (D and E) hearts. F: in wt-TBX5-CXIZ-infected hearts, staining of the epicardium and coronary vasculature was not detected. In all cases, minimal myocyte expression of the transgene (m) is observed due to leakage of the retrovirus into the myocardium during pressure microinjection and thus verifies both the infectivity of the retrovirus and expression of the transgene. Bar shown in A = 800 μm (for A and F), or 400 μm (for B and C), or 100 μm (for D and E).
Cultures were infected with CXIZ, wt-TBX5-CXIZ, or Gly80Arg-TBX5-CXIZ retroviruses and then fixed and immuno-stained for PCNA within 24 h of initial proepicardial cell plating. These studies demonstrated no significant difference in the fraction of PCNA-positive cells regardless of TBX5 isoform overexpression (data not shown). Quantitation of these studies is shown in Fig. 6A.

Since our experiments suggested that TBX5 does not significantly alter proepicardial cell proliferation, we tested the hypothesis that TBX5 might inhibit proepicardial cell migration out of the PEO and thereby inhibit incorporation of retrovirus-infected cells into the epicardium and coronary vasculature. Because it had been previously suggested that TBX5 regulation of cell migration might play a role in establishment of the limb bud (2), we first sought to determine whether TBX5 inhibited in vitro migration of D17 cells. Osteosarcoma cell activity in vitro has been previously utilized as an experimental model of bone formation (44, 61). We had previously shown that TBX5 inhibited D17 cell proliferation, but recent data has suggested that the effects of TBX5 on cell migration and cell proliferation might contribute to limb development (2). D17 cells were infected with CXIZ, wt-TBX5-CXIZ, or Gly80Arg-TBX5-CXIZ retroviruses. Infected cells were allowed to migrate in culture for 10 days in the presence of hydroxyurea, a potent inhibitor of cell proliferation. Quantification of cell migration (Fig. 6B) revealed that wt-TBX5-CXIZ-infected D17 cells migrated significantly less than D17 cells infected with CXIZ or Gly80Arg-TBX5-CXIZ (P < 0.0001). To determine whether TBX5-mediated inhibition of cell migration was cell-autonomous, we assessed the migration of CXIZ-infected D17 cells cocultured with D17 cells infected with wt-TBX5-CXIZ. Cultures analyzed contained 0, 14, or 41% wt-TBX5-CXIZ-infected D17 cells, so the majority of cells at the migrating front would be CXIZ-infected D17 cells. After 10 days of coculture, we did not observe (Fig. 6C) significant alterations (P = 0.9) in D17 migration regardless of the amount of wt-TBX5-CXIZ-infected D17 cells present. Therefore, we concluded that TBX5 inhibited D17 cell migration in vitro in a cell-autonomous fashion.

Because D17 osteosarcoma cell behavior may not mimic proepicardial cell behavior, we explored the consequences of TBX5 overexpression on proepicardial cell migration. Explanted PEOs were either infected in culture with CXIZ, wt-TBX5-CXIZ, or Gly80Arg-TBX5-CXIZ retroviruses for 24 h and maintained for a further 48 h in virus-free media, or they were transfected with pEGFP-C1 or pEGFP-C1-TBX5 for 4 h and then maintained in normal media for a further 24 h. Migration of cells was assessed by β-galactosidase staining in retrovirus-infected cultures or by fluorescence microscopy in plasmid-transfected cultures. As previously described (30), proepicardial cells migrated out of the PEO in a radial fashion during culture of explanted PEOs. In CXIZ- and Gly80Arg-TBX5-CXIZ-infected cultures, 88 and 91%, respectively, of β-galactosidase-positive cells had migrated out of the explant (Fig. 7A). By contrast, only 25% of β-galactosidase-positive cells were seen in the wt-TBX5-CXIZ migrating population, and most remained within the explanted PEO (Fig. 7A). Notably, even though a minority of proepicardial cells were infected by the retrovirus, there was no evidence of inhibition of migration of noninfected cells out of the PEO. In cultures transfected with pEGFP-C1 plasmid alone, 81% of EGFP-positive cells migrated out of the explant (Fig. 7B). However, in pEGFP-C1-TBX5-transfected cultures, only 32% of EGFP-positive cells migrated out of the explant, while the majority remained within the explanted PEO (Fig. 7C). Not only do these data support the hypothesis that TBX5 overexpression inhibits proepicardial cell migration, but these data also confirm that this effect is cell autonomous.

We further considered whether TBX5 activity is essential for proepicardial cell migration. To evaluate this hypothesis, we determined the consequences of loss of cTbx5 activity on proepicardial cell migration in vitro by treatment with cTbx5 morpholino antisense oligonucleotides (cTbx5-MO) derived from sequences flanking the cTbx5 consensus Kozak sequence. Similar oligonucleotides have been used by Ng et al. (54), Ahn et al. (2), and Garrity et al. (16) to inhibit Tbx5 translation during zebrafish pectoral limb bud and heart development. PEO explants were transfected with cTbx5-MO or a control
antisense oligomer comprising the same sequence, but in an inverted orientation (cTbx5-INV). Since both oligomers were covalently tagged with Lissamine, transfection efficiency was assessed by fluorescent microscopy, and 40–50% of cells incorporated both oligomers. Proepicardial cell migration was assessed after 24 h in culture. In explants treated with either cTbx5-MO or cTbx5-INV, we observed no change in migration of proepicardial cells that did not take up the antisense oligomers. However, migration of cTbx5-MO-transfected proepicardial cells was markedly inhibited compared with the migration of cTbx5-INV-transfected cells; most cTbx5-MO proepicardial cells failed to migrate out of the explanted PEO (Fig. 8). These studies further suggest that not only is the contribution of Tbx5 to cell migration cell autonomous, but also that regulation of Tbx5 expression is required for normal proepicardial cell migration.

TBX5 overexpression inhibits proepicardial cell migration in vivo. To determine whether TBX5 has effects in vivo similar to those effects it has on cell migration in vitro, we analyzed the fate of TBX5-overexpressing proepicardial cells in the developing chick in vivo (Fig. 9). PEOs of HH stages 16–18 embryonic chicks were microinjected with CXIZ, Gly80Arg-TBX5-CXIZ, or wt-TBX5-CXIZ retrovirus, and the embryos were euthanized and stained for β-galactosidase activity at 8, 24, and 48 h following microinjection. In both CXIZ- and wt-TBX5-CXIZ-infected embryos, β-galactosidase staining was evident in the PEO by 8 h postmicroinjection. By 24 h postmicroinjection, CXIZ-infected proepicardial cells were noted to have begun to migrate over the surface of the looping heart and, by 48 h, were observed to incorporate into nascent epicardium and vascular structures. Similar data was obtained for Gly80Arg-TBX5-CXIZ-infected cells (data not shown). However, at these 24 and 48 h time points, wt-TBX5-CXIZ-infected proepicardial cells remained in the PEO and failed to migrate over the heart surface.

Native Tbx5 expression in migrating proepicardial cells. Our studies suggested that disruption of Tbx5 signaling in genetically engineered cells perturbs their capacity for migration. We therefore hypothesized that native Tbx5 expression might be dynamically regulated in cells that alternate between stationary and migratory states during development. To address this, we compared cTbx5 expression in chick proepicardial cells that were stationary or migrating. PEOs were explanted from 81 HH stage 16–18 chick embryos and maintained in organ culture for 72 h, by which time a subpopulation of proepicardial cells had migrated out of the PEO onto the culture dish while the rest remained within the PEO. From each culture, the residual, nonmigrating PEO was removed by microdissection, and then the migrating proepicardial cells were removed from the dish by trypsinization. RT-PCR analyses of cTbx5 expression were performed on RNA samples from both populations of cells. These studies revealed that like HH stage 16–18 PEOs in vivo (Fig. 3), the nonmigrating cells from cultured PEOs continued to express cTbx5 (Fig. 10). However, migrating proepicardial cells no longer expressed detectable levels of cTbx5 (Fig. 10). Thus migration of proepicardial cells out of the PEOs in this culture model was associated with inactivation of cTbx5 expression.

Do Tbx18 and Tbx20 contribute to Tbx5 effects on proepicardial cell migration? Concomitant alterations in the expression levels of multiple T-box transcription factors, e.g., Tbx5,
Tbx2, Tbx3, and Tbx20, have been suggested to play a role in myocardial development (10a, 57), and our observations of proepicardial cell behavior may not be solely due to Tbx5 but rather imbalances of several PEO T-box genes. Both Tbx18 and Tbx20 have been implicated in vascular development and are expressed in the PEO/septum transversum (8, 28). We used quantitative RT-PCR to determine whether proepicardial expression of Tbx18 and Tbx20 changed in response to Tbx5 knockdown via antisense inhibition of Tbx5 expression as described above. Tbx18 expression was not significantly changed in PEO cultures treated with cTbx5-MO compared with those treated with cTbx5-INV (1.3 ± 0.2 x). However, Tbx5 knockdown was associated with a significant increase (1.9 ± 0.3 x) in Tbx20 expression. Recently, Plageman et al. (57) suggested that maintenance of Tbx5 and Tbx20 balance may be critical for myocardial development. To determine whether proepicardial cell migration was similarly regulated, we directly tested the effect of altered Tbx20 expression on proepicardial cell migration. We studied the consequences of both Tbx20 knockdown (using morpholino antisense oligonucleotides) and Tbx20 overexpression (using pEGFP-C1-TBX20 plasmids; see Fig. 7, A and D) on proepicardial cell migration out of cultured PEO explants just as we had for Tbx5. We found that 83% and 89% of proepicardial cells subject to cTbx20 knockdown or TBX20 overexpression, respectively, migrated out of the proepicardial explant. These proportions were similar to the high proportion of migrating cells seen in control cultures treated with inverted cTbx20 antisense oligomers (82%) or pEGFP-C1 plasmid (81%) but significantly differed (P < 0.01) from the low proportion of cells that migrated out of the proepicardial explant in cultures treated with cTbx5 antisense oligomers (42%) or with pEGFP-C1-wt-TBX5 (16%).

DISCUSSION

In this study, we demonstrate that TBX5 is expressed in the PEO, which contains epicardial and coronary vascular progenitor cells, and that TBX5 inhibits proepicardial cell migration in vitro and in vivo. Mosaic overexpression of TBX5 in the PEO in vivo during cardiogenesis inhibits proepicardial cell migration out of the PEO with consequent impaired incorporation of transgenic cells into the epicardium and coronary blood vessels. Proepicardial cell migration in vitro is affected by changes in TBX5 dosage and genetically engineered augmentation or inhibition of TBX5 expression both inhibit proepicardial cell migration. Furthermore, analyses of cultured chick proepicardial cells and of human fetal tissues suggest that physiological regulation of TBX5 expression may occur in vivo in concert with both initiation and cessation of cell migration during embryogenesis. Since we do not observe TBX5 expression in migrating proepicardial cells, our studies suggest that there may be distinct temporal requirements for TBX5 and that our genetic manipulations impair proepicardial cell migration by modifying TBX5 expression in the premigratory cells of the PEO.

We have previously shown that TBX5 inhibits cardiomyocyte proliferation during myocardial development (23). Our data now extend the profile of TBX5 activity to include regulation of migration and indicate that inhibition of migra-
tion by TBX5 is partially independent of this transcription factor’s effects on cell proliferation. Analyses of PCNA expression in TBX5 transgenic chick proepicardial cells demonstrate no effect of TBX5 on proepicardial cell proliferation. Furthermore, unlike TBX5 inhibition of proliferation, TBX5 inhibition of migration is cell autonomous. Coculture of D17 cells with D17 cells genetically engineered to overexpress TBX5 fails to modify their migration in vitro. Although TBX5

Fig. 8. Antisense suppression of cTbx5 inhibits proepicardial cell migration in vitro. Fluorescence microscopy of proepicardial explants 24 h after being transfected with cTbx5-MO antisense oligonucleotide (A) or the cTbx5-INV control oligonucleotide (B) reveals that cTbx5 suppression prevents treated cells from migrating out of the explanted organ. Leading edges of migration are shown, and direction of migration is toward the top. Transfected cells (blue in A, red in B) are detected by fluorescence microscopy. C: quantitative analysis demonstrates that unlike cTbx5-INV-transfected cells (blue) that migrate progressively out of the proepicardial explant, cTbx5-MO-transfected cells (red) largely remain in the PEO explant, and concentric rings further from the explant contain fewer and fewer cTbx5-MO-transfected cells. Shown are the percentages of transfected proepicardial cells in each culture that are located within the explant (i.e., 0 μm migrated) or at varying distances outside the explant (1–200 μm, 201–400 μm, 301–600 μm, or 601–800 μm).

Fig. 9. Effect of TBX5 overexpression on proepicardial cell migration in vivo. At 8 h (A and D), 24 h (B and E), and 48 h (C and F) following microinjection of PEOs in ovo with CXIZ (A–C) or wt-TBX5-CXIZ (D–F) retroviruses, chick embryos were euthanized, fixed, and stained for β-galactosidase activity. A and D: β-galactosidase staining (arrows) was evident in PEOs 8 h postmicroinjection, regardless of which retrovirus was injected. B: by 24 h postmicroinjection, CXIZ-infected proepicardial cells (arrow) began migrating out of the PEO and onto the surface of the naked myocardium. C: by 48 h, the PEO had involuted, and CXIZ-infected proepicardial cells had incorporated into the epicardium and underlying coronary vessels. E: however, at 24 h postmicroinjection of wt-TBX5-CXIZ into embryos, infected proepicardial cells (arrow) remained in the PEO. F: by 48 h, only rare wt-TBX5-CXIZ-infected proepicardial cells (arrow) were evident outside of the now involuted PEO.
overexpression retards proepicardial cell migration out of cultured PEO explants, migration of nontransgenic cells out of the same PEOs is not impeded. Moreover, in the setting of mosaic overexpression of Tbx5 in the chick PEO, further cardiogenic development does support the establishment of epicardium and coronary vasculature from nontransgenic cells.

Tbx5 modulation of cell differentiation has been reported in both the heart and the limb. In this study, inhibition of proepicardial cell migration occurs before the differentiating events that constitute EMT and prevents the physical interaction of EPDCs with myocardial cells that is required for EMT. Thus we hypothesize that Tbx5 regulation of cell migration is also independent of its effects on cell differentiation. However, we cannot exclude Tbx5 modulation of early, as yet uncharacterized, differentiating events that might occur within the PEO before cells migrate over and into the myocardium.

Investigation of the role of Tbx5 in zebrafish fin development also suggests independent contributions of Tbx5 to regulation of cell migration, proliferation, and differentiation. Although there is a clear role for Tbx5 in cell differentiation and proliferation during limb specification, Ahn et al. (2) demonstrated that the contribution of Tbx5 to limb development commences prior to limb bud formation. Antisense knockdown of Tbx5 impairs mesenchymal aggregation of limb precursor cells and, in a cell-autonomous fashion, prevents lateral plate mesodermal cells from migrating to the nascent pectoral fin bud. Cell adhesive properties may also be changed during fin development in response to altered Tbx5 dose, and likewise, defective proepicardial cell adhesion during migration out of the PEO may contribute to the impaired epicardial formation and coronary vasculogenesis in our chick studies. Altered dosage of other T-box transcription factors has also been shown to modify cell migration. Loss of Tbx16 in the zebrafish spadetail mutant causes a cell-autonomous distorted convergence of marginal mesodermal cells during gastrulation (20). Wilson et al. (72) proposed that abnormal notochord morphogenesis in the setting of loss of T(Brachyury) is a consequence of a defective migration of posterior mesodermal cells through the primitive streak that may involve abnormal cell adhesion properties. Future studies to decipher mechanisms underlying Tbx5 inhibition of proepicardial cell migration will explore potential regulation of cell-cell adhesion molecules such as VCAM-1 (31) and BVES (70) and cell-matrix adhesion molecules such as α4-integrin (73) that are associated with proepicardial development (59), as well as transcriptional regulators of epicardial EMT such as Ets-1 and Ets-2 (35).

The molecular genetic events downstream from Tbx5 that contribute to regulation of cell migration and EMT remain to be defined. FGF isoforms (1, 2, and 7), TGFβ isoforms (1, 2, and 3), Ets-1, Ets-2, and Fog2 have all been implicated in coronary vasculogenesis and cardiac EMT (35, 50, 64, 69). Related molecules have all been tied to T-box gene activity in other experimental models. FGF10 has been proposed to be a downstream target of Tbx5 in murine limb development (1, 54). In Drosophila, the TGFβ homolog decapentaplegic acts to regulate expression of the T-box gene optomotor blind during development of the wing imaginal disc (52). GATA-4 (the binding partner of Fog2) interacts with Tbx5 and Nkx2.5 to activate synergistically expression of the atrial natriuretic factor gene (15, 55, 68), and Gata-4 expression is altered in Tbx5 homozygous null mice (10). Thus these are all intriguing candidate members of a Tbx5-dependent pathway operant in proepicardial cells and their descendants.

Although our data exclude altered Tbx18 and Tbx20 expression as explanations for Tbx5-mediated modulation of proepicardial cell migration, these data do not exclude a role in other proepicardial cell behaviors including proliferation and differentiation. Nor do our data exclude a role for Tbx5 in these other properties either. Additionally, the observation that antisense knockdown of Tbx5 inhibits proepicardial cell migration while proepicardial physiological inactivation of Tbx5 expression is associated with promotion of cell migration suggests that non-Tbx5-dependent pathways are operant in vivo as well. Human and animal genetic studies have previously predicted that T-box gene dose is finely regulated in normal development, and perturbations that either increase or decrease T-box gene dose lead to abnormal organogenesis. Murine models of overexpression or haploinsufficiency of Tbx1 all lead to aortic arch abnormalities that are also seen in humans with DiGeorge syndrome who have deletions encompassing the Tbx1 gene (19, 27, 36, 46). Abnormal cardiogenesis is a feature of murine models of Tbx5 overexpression and haploinsufficiency (10, 34) and is similar to the human congenital heart disease seen in Holt-Oram patients with Tbx5 haploinsufficiency and in humans with chromosome 12q2 duplications that include Tbx5 (3, 32). Vascular anomalies (patent ductus arteriosus, persistent left superior vena cava, anomalous pulmonary venous return, aortic coarctation) have been variably noted in these human patients and animal models, but coronary artery anatomy has not been well studied in these individuals. Tbx5 and other members of Tbx5-dependent pathways in PEO development will be appropriate candidates for genetic analyses in individuals with coronary artery and epicardial anomalies.

ACKNOWLEDGMENTS

We are grateful to Andy Wessels, Maurice J. B. van den Hoff, David Reese, Romulo Hurtado, and Theresa Zagreda for advice regarding Tbx5 manipulation and histological analysis.

GRANTS

This work was supported by the March of Dimes Birth Defects Foundation (to C. T. Basson), the Edward Mallinckrodt, Jr. Foundation (to C. T. Basson), the Cornell Vascular Medicine Foundation (to C. T. Basson), National Heart,
REFERENCES

32. Mann J. Does the subepicardial mesenchyme contribute myocardio-blasts to the myocardium of the chick embryo heart? A quail-chick

Lung, and Blood Institute (NHLBI) Grant R01-HL-66214 (to C. T. Basson), and by an NHLBI Minority Investigator Research Award (to C. J. Hatcher).

