Introduction

Following an acute myocardial infarction, reperfusion of blood flow to the ischemic myocardium, although necessary, leads to compromised heart function resulting in MI/R injury. PKC epsilon positively regulates eNOS and reduces mitochondrial damage to reduce superoxide production. During I/R insult, PKC epsilon activates PKC (e.g., PKC epsilon) and inhibits uncoupled NO synthesis, which produces O$_2$- instead of NO resulting in vascular endothelial dysfunction. Activated PKC epsilon enhances eNOS activity and opens mitochondrial ATP-dependent potassium channels causing exacerbation of MI/R injury during reperfusion. By contrast, PKC epsilon translocation interacts with both substrates by binding to the PKC epsilon receptor for activated C kinase (RACK) domain [see Figure 1] to provide cardioprotective effects.

Hypothesis

We hypothesize that PKC epsilon-treated I/R hearts compared to untreated I/R hearts will exhibit improved post-reperfusion cardiac function and regional coronary flow.

Methods

Isolated Rat Heart Perfusion Preparation: Hearts were isolated from male Sprague Dawley rats (275-325g, Charles River, Springfield MA) via Langendorff heart preparation as previously described [4]. Experimental protocol was determined in the rat ventricle and this improvement in flow probably underlies the improvement in cardiac performance.

Determination of regional coronary flow using microspheres allows for a direct correlation between left ventricular coronary flow and left ventricular cardiac function. As evidenced by the data in Figure 3 coronary flow between PKC epsilon-treated I/R hearts and untreated I/R hearts were equivalent, yet regional flow in the left ventricle injected with microspheres was significantly increased in PKC epsilon-treated I/R hearts, see Figure 4. Our findings suggest that the ex vivo rat heart is sensitive to reductions in oxygen concentration in Krebs’ buffer. Such a decrease in levels of microspheres increase measure depression of cardiac function. Future experiments will determine the fluorescence in the single injection 45 min reperfusion.

Results

Untreated shams (i.e., no I/R) hearts without microsphere maintained cardiac contractile function throughout the experimental time period. By contrast, shams hearts that received triple microsphere injections showed a significant decrease in left ventricular developed pressure (LVPD) (i.e., left ventricular end-systolic pressure (LVEPS)) and this effect is attributed to a significant decrease in LVEPS and dP/dt max (Fig. 3).

Statistical Analysis: A student’s t-test was used to assess statistical differences in cardiac functions and microsphere fluorescence between I/R and I/R + PKC epsilon-treated I/R hearts. Probability values of p < 0.05 were considered statistically significant.

References

Acknowledgements

The study was supported by the Department of Medical Sciences, Division of Research and the Center for Cardiovascular Diseases of Aging Philadelphia College of Osteopathic Medicine and the Pennsylvania Department of Health. Grant: 4100057680.