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motion between two systems, as shown by the graph, is 
wide-ranging and different. In comparison, most motion 
between the wild type and L245P mutant systems was 
caused by residues number 183-191 and 250-255 across 
mode 1, graphed in the Figure 7A. A higher mobility 
frequency was observed in the residues number located 
at 120-180 and 250-255 in mode 2. Residue behavior at 
these positions is emphasized at the partial opening of the 
mutant and complete closing of all parts of the wild type. 
This observation was also seen in the residues number 50-
100 and 230-255 of mode 3. Evidently, residues number 
70-77 and 183-191 also played significant roles in the 
secondary structure modifications of the mutant systems. 
These results are consistent with the RMSF plot, in which 
the mentioned regions are highly vibrant compared to the 
other locations. Most of the motions for the wild type were 
due to residues number 150-180 across all three modes 
as shown in Figure 7B. The wild type shows a twisting 

motion from C-terminal to N-terminal based on the 
direction of the residue movement in all parts of protein. 
Furthermore, the direction of the above residues number 
points toward the center of the active site spatially in 
the bHLH-Zip domain, thus creating a suitable location 
in the membrane to launch several signaling cascades. 
Table 3 highlights the list of residues that attributed to 
the majority of motions across different normal modes 
in wild and mutant types. As enumerated in Table 3, the 
residues with the highest motion include number 70-90 
and 220-250 especially at position 245th. These situations 
are more mobile than the wild type across three normal 
modes. These results are consistent to the Figure 4A, 
which showed higher motion in the α2 region i.e., bHLH-
Zip domain.

Dynamically, all these projections show that the 
mutant complexes have high values, signifying a large 
increase in the flexibility in comparison to the wild 

Figure 7: Mobility effects of the p. L245P ‎mutation on the PROM1 ‎protein. A. Residue based mobility plots of the wild and 
mutant showing mobility at different residues across different modes. B. Porcupine plots in the three different modes of the wild type 
(blue) PROM1 protein. This graph shows the number of residues 70-77 and 183-191 playing significant roles in the secondary structure 
modifications of the mutant form. C. Motion in the three different modes of the L245P mutant PROM1 protein. Arrows in blue, green, 
and red indicate motions along mode 1, 2, and 3 respectively. These figures clearly show that the L245P mutation affected the overall 
conformational fluctuation of the system. Our results indicate the most motions in mode 1 located in residues number 183-191 I. and 250-
255 (II) (mode 1), 120-180 (III) and 250-255 (IV) (mode 2), as well as 50-100 (V) and 230-255 (VI) (mode 3).
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complex during the collective motion of the PROM1 
protein; this pathogenic and deleterious mutation made 
the PROM1 protein less stable compared to the wild type 
protein complex (Figure 7B-7C).

The L245P mutant induces instability in free 
energy landscape

To assess the individual amino acid contribution 
to the total free energy profile in a simulation between 
the wild and L245P mutant, the interaction energy for 
the previously mentioned residue was carried out using 
GROMACS package by principle component analysis 
(PCA). As shown in Figure 8, energy distribution is a 
centralized form, indicating the overall conformational 
stability of the system. However, the highest mobility and 
fluctuation were observed in the L245P mutant, which 
was depicted as the higher FEL. The lowest energy for the 
wild type system was found to be 0.113 kcal/mol (Figure 
8A), while the mutant variant was 0.605 kcal/mol (Figure 

8B). These figures show that the L245P mutation affected 
the overall conformational stability of the system. These 
energy levels induced instability in the general structure 
of the protein. Thermodynamic profile analysis in Figure 
8 indicates that longer population of ‎conformations had 
higher energy in the L245P-mutant (0-14.5 kcal/mol) 
compared to native ‎type. ‎This observation is consistent 
with previous PCA scatter and the porcupine plot, further 
supporting that the L245P mutant decreases the stability.

DISCUSSION

In this genetic analysis study, we performed TES 
arrays to identify the genetic defect in a Chinese family 
with multi-cases of STGD4-like MD retinal degenerations 
(M107). Using this approach, we successfully identified 
a novel c.734T > C (p.L245P) PROM1 heterozygous 
mutation. Our findings highlighted that the variant in the 
PROM1 gene was likely a deleterious and disease-causing 
mutation in this M107 family, thereby expanding the 
PROM1 mutation spectrum for STGD4-like MD. Then, 

Figure 8: Free energy landscape (FEL). Projections of FEL of the wild A. and the L245P mutant PROM1 B. conformational 
space onto PC1 and PC2 produced from PCA. The dark blue indicates the lowest energy configuration and red shows the highest energy 
configuration. These energy levels induce the instability in the general structure of mutated protein. This observation is consistent with the 
PCA scatter and the porcupine plot.
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the protein structure-based virtual screening analysis was 
performed to identify the protein structure and function of 
c.734T > C (p.L245P) mutant. Furthermore, atomic level 
study was performed by molecular dynamic simulations 
to better understand the effects of the deleterious variant 
on p.L245P in active site domain of PROM1. The 
computational prediction methods’ results clearly showed 
that a novel PROM1 heterozygous mutation significantly 
affects the protein structure and function, including 
fluctuation, flexibility, atomic density distribution, and 
stability.

Despite extensive investigations on STGD4-like 
MD, the details of its etiology and pathogenesis remain 
unclear. Familial, identical, and adoption studies have 
consistently recommended that genetic variation is the 
most important general factor, which would be an indicator 
of its high heritability [2, 24-29]. Clinical variability exists 
in the STGD-like MD, even the same gene of different 
point mutations can cause variance phenotypes [30]; 
importantly, different genes caused the STGD-like MD, 
examples include families with ELOVL4 mutation, ABCA4 
mutation, and PROM1 mutation [4, 5, 9, 10, 12, 18-20, 
22]. In general, the STGD4-like MD is juvenile-onset MD 
that is generally related to an ELOVL4 mutation following 
PROM1. But, most STGD-like MD subjects maintained 
normal vision until the sixth decade of life. This gradually 
progressive disease is diagnosed with photophobia, 
paracentral scotoma, slow dark adaptation, and loss 
of color and central vision. Symptoms and prevalence 
of STGD-like MD are the same in altered individuals; 
members of the same family can show variations in the 
course of the illness [11]. Clinically, it is hard to predict 
or screen exactly when the disease will be evident and 
how fast it will develop, according to marked phenotype 
variability. It is well established that TES is a cost-
effective and an expedited approach to screen and identify 
pathogenic mutations responsible for inherited disorders 
on a large scale in comparison to other genetic methods 
[31, 32]. This is a predominantly accurate technique when 
the study conditions are particularly heterogeneous, as in 
a STGD-like MD [33]. By helping to advance imaging 
techniques, we have been able to further characterize this 
disease [34]. 

For the first time ever, this study characterized the 
novel pathogenic mutation in three-dimensional protein 
structure, analyzing this change at the structural level. Our 
findings show that c.734T > C (p.L245P) is functionally 
damaging and the disease-causing mutation in protein; 
therefore, we introduce it as a candidate for further 
clinical precision diagnosis and interpret that the same 
gene mutation leads to varying onset at different ages, a 
characteristic that is clinically useful for early prevention. 

It has been widely accepted that the computational 
and theoretical methods such as molecular dynamic 
simulation, PCA, FEL, and RINs analysis (with parameters 
of molecular dynamic to describe motion, stability and 

intercellular binding, respectively) can be used to detect 
and investigate the effects of lethal polymorphisms on the 
function and structure of protein [35-40]. Understanding 
protein conformational changes properly can elucidate 
the mechanisms underlying MD disease phenotypes for 
designing suitable drugs and medical managements. In 
this study, these methods clearly explained the impact 
of the mutation on the active site of the PROM1 protein, 
before undertaking further validation by experimental 
methods. Mutation of the residue alters the overall active 
site energy by ~ +6.25 kcal/mol and affects the landscape 
of the protein and atomic interaction of key residues. The 
different molecular dynamic parameters such as RMSD, 
RMSF, DSSP, and Rg index confirmed that the p.L245P 
pathogenic ‎mutation changes the molecular stability and 
flexibility as well as the amino acid interaction network 
and 3D conformational landscape. Interestingly, hydrogen 
bond interactions and van-der Waals forces of Pro245 with 
His242, Val73, Asn69, Leu248, Glu249, and Ile241 ‎in the 
α-helical structure of bHLH-Zip domain significantly 
increased to maintain a stable contact of the mutant form 
of PROM1, whereas total protein stability was reduced due 
to fluctuation in the hinge region of the mutated structure. 
The substitution of deleterious L245P mutation might 
change the electrostatic charge distribution in proteins and 
affect normal interactions. From this analysis, we suggest 
that the mutated PROM1 domain has drastically decreased 
functionality and stability capacity as a consequence of 
the partial unfolding of the α2/α3 helices in the bHLH-
Zip domain. This mutation led to a change of a neutral 
amino acid residue, Leu, to a nonpolar charged residue, 
Pro, located at the basic repeating unit of the bHLH-Zip. 
The Leu position in bHLH-Zip plays an essential role in 
transcriptional regulation of PROM1 [41]. It is likely that 
the substitution may impair protein stability and proper 
function, leading to the STGD4-like MD disorder [42]. 
The Pro mutation in the bHLH-Zip domain may destroy 
the PROM1 transportation [43], a phenomenon possible 
and consistent in our patient’s observation. Consequently, 
this instability and inflexibility affected the main function 
of PROM1 in the plasma membrane invaginations and 
disk malfunction, trapping it in the myoid region of 
the photoreceptors. Functionally, the PROM1 protein 
is necessary for disk formations in the photoreceptor 
cells. PROM1 has an influence on the formation and 
organization of disk within the photoreceptors. Mutations 
in PROM1 gene would trap PROM1 in the myoid region 
of the photoreceptors, preventing it from migrating to 
the site that formed disks. Accordingly, abnormalities in 
PROM1 positions in the photoreceptors cells will lead 
to disk malfunction. Previous studies have shown that 
different mutants undergo different misfolding pathways 
and exhibit different pathogenesis according to the 
different MD-related diseases [10, 12, 18-20]. In addition 
to an autosomal recessive PROM1 early-childhood-
onset retinopathy, an autosomal dominant later-onset 
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macular retinal phenotype has been documented in some 
individuals heterozygous for PROM1 mutations [18, 44], 
including in our study. 

To the best of our knowledge, this is first report 
that identified and characterized a novel c.734T > C 
(p.L245P) mutation of PROM1 with STGD4-like MD 
using the TES and multiple molecular dynamic analyses. 
The findings clearly confirmed that the variant in the 
PROM1 gene is most likely the deleterious and disease-
causing mutation in our studied family. While variants 
with incomplete segregation would be regarded as low 
to moderated penetrance effectors, complete segregation 
of a one novel variant (in PROM1 gene) demonstrates 
the variants are noteworthy candidates in case-control or 
population studies; however, it warrants more extensive 
studies of the PROM1, including in various ethnic groups. 
Altogether, this study provides compelling evidence 
that the PROM1 gene mutation should contribute to the 
progressive causativeness or susceptibility in patients 
with STGD4-like MD, as well as defines a new approach 
into the genetic characterization, precision diagnosis and 
prevention for STGD4-like MD disease.

MATERIALS AND METHODS

Ethical consideration, patient information, and 
clinical assessment

The study was approved by the Ethical committee of 
Southwest Medical University according to the Helsinki 
Declaration (1983 Revision) [45]. The cases were coded, 
and measurements were made in a blinded fashion by 
molecularist.

A four-generation, 18-related Chinese patients 
(M107) with familial STGD4-like MD was recruited. 
The genetic and full pedigree structures of the subjects 
are shown in Figure 1A. The patient proband claimed 
to have eye problems since the age of 42. All patients 
were diagnosed with STGD4-like MD by an experienced 
ophthalmologist; we also documented the patients’ 
inheritance patterns, ethnicity and summary information 
regarding the numbers of affected subject and members 
who were available for sampling. We obtained medical 
history and standard ophthalmologic examinations 
including best corrected visual acuity measurements, 
slit-lamp biomicroscopy, and color vision tests in all 
available family members. In addition, FP, FA (Spectralis; 
Heidelberg Engineering, Heidelberg, Germany), visual 
field tests (Carl Zeiss, Germany), and retinal structure 
were examined by OCT (Carl Zeiss, Germany). ERGs 
were performed using corneal “ERGjet” contact lens 
electrodes (RetiPort ERG System; Roland Consult, 
Wiesbaden, Germany) [45]. The ERGs protocol complied 
with the standards published by the International Society 
for Clinical Electrophysiology of Vision.

DNA sampling

Peripheral blood samples in the pedigree M107 
family and unrelated ethnically matched healthy control 
volunteers with no family history of this disorder were 
collected. gDNA was extracted from peripheral blood 
lymphocytes according to the standard phenol-chloroform 
method [45]. The DNA quality was measured by a 
NanoDrop-2000-spectrophotometer. High quality intact 
genomic DNA with optical density ratio of 260/280~ 1.8 
and 260/230 > 1.5 were used for further analysis.

Design of exome capture panel

Illumina paired-end libraries (Illumina, Inc., 
San Diego, CA) were generated according to the 
manufacturer’s sample preparation protocol for gDNA [46, 
47],. TES on an affected family member was randomly 
sheared by sonication into fragments of about 300-500 
bp and then hybridized to the precapture libraries, which 
were quantified (PicoGreen fluorescence assay kit; Life 
Technologies, Carlsbad, CA); their size distributions were 
determined by a commercial bioanalytical system (Agilent 
2100 BioAnalyzer; Agilent Technologies, Santa Clara, 
CA). For each capture reaction, fifty pre-captured libraries 
(60 ng/library) were pooled together. Hybridization and 
wash kits (Agilent Technologies, Santa Clara, CA) were 
used for the washing and recovery of captured DNA 
following the standard manufacturer’s protocol. Captured 
libraries were quantified and sequenced (Illumina HiSeq 
2000; Illumina, Inc.) as 100-150 bp paired-end reads, 
following the manufacturer’s protocols whitch performed 
at the BCM-FGI core. More than 99% of the targeted 
coding exons were covered by at least 10 folds non-
redundant sequencing reads.

Variant filtering and homozygosity mapping

After passed quality control (QC) of the illumina 
reads ( > 70-80% Q30 data, < 0.5% error rate), Burrows-
Wheeler Aligner (BWA) V7.10 was used to access 
sequence reads to the human reference genome from 
available public online UCSC database (http://genome.
ucsc.edu/), version hg19 (build 37.1). Next, recalibration 
and local realignment were analyzed using the Genome 
Analysis Toolkit (GATK version 1.0.5974), and the refined 
sequencing results were subjected to variant calling using 
a toolkit (Atlas2). Variant annotation was performed 
by applying ANNOVAR. Sequencing depth > 4, the 
estimated copy number ≤ 2, SNP quality > 20 (score 20 
represents 99% accuracy of a base call) and the distance 
between two SNPs > 5 were considered the filtration 
criteria for candidate SNPs [48]. We first searched for 
known pathogenic mutations in STGD candidate genes 
and then variants with a MAF (Minor allele frequency) 
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of less than 5% allele frequency in databases of 1000 
Genomes Project (1000genomes release_20100804, 
http://www.1000genomes.org/). In total, the average of 
4000 SNPs and INDELs were found after applying these 
filters. Subsequently, the phenotype of all cases was 
considered to be similar. At first approach, our focus was 
on identifying common variants among affected subjects 
between families, but we also identified any shared variant 
related to STGD. Consequently, we searched for variants 
within STGD-related genes in proband (depicted in Figure 
1A with pedigree II:2) separately. The selected variants 
were further analyzed in respect to whether they are 
homozygous or heterozygous.

Mutant confirmation and segregation analysis

For mutant confirmation and segregation analysis, 
we designed locus-specific primers using the online 
Primer3 program (http://primer3.ut.ee/) for polymerase 
chain reaction (PCR) amplification of prioritized variants 
and direct sequencing, upon the gDNAs of family 
members. Then, the PCR products were validated and 
confirmed by Sanger sequencing methods on an ABI 
3500DX sequencer (Applied Biosystems Inc., Foster City, 
CA, USA) with the specific primers. Then, all results were 
analyzed by Sequencing Analysis v.5.2 software (Applied 
Biosystems). All analyses were performed with two 
replicates per sample; a non-reverse transcription control 
and non-template control for each test. The specific primer 
sequences of PROM1 gene variant for Sanger sequencing 
are listed in Supplementary Table 2.

Mutation analysis in silico

The damaging effects of heterozygous mutations 
(c.734T > C mutation)‎ on PROM1 protein functions 
were evaluated in silico using online web server 
Mutation Taster (http://www. mutationtaster.org/) [49], 
Polymorphism Phenotyping version 2 (PolyPhen-2, 
http://genetics.bwh.harvard.edu/pph2/) [50], SIFT (http://
sift.jcvi.org/) [51], Have Your Protein Explained (HOPE) 
[52], and PANTHER (http://www.pantherdb.org/tools/
csnpScoreForm.jsp) programs [53]. Functional impact 
of the mutation was documented as ‘‘tolerated’’ or 
‘‘damaging’’ for SIFT and as ‘‘polymorphism’’ or ‘‘disease 
causing’’ for Mutation Taster. PolyPhen-2 classifies 
predicted effects of amino acid substitutions, marking 
the function of human proteins as ‘‘benign’’, ‘‘possibly 
damaging’’, ‘‘probably damaging’’, or ‘‘unknown’’. To 
predict stability changes upon mutation from the protein 
sequence or structure, I-Mutant3.0 was used based on the 
stability predictors (DDG < 0: decrease stability, DDG > 
0: increase stability) [54]. Pairwise alignment between 
template and target were performed by EBI/EMBL. Also, 
NCBI online data bases (http://www.ncbi.nlm.nih.gov/) 

were used to analyze the PROM1 conservation in deferent 
organism gene by inputting the data into the HomoloGene 
software of NCBI “Show Multiple Alignment” and 
Jalview software [55].

Homological based modeling

The sequence of human PROM1 was downloaded 
from the universal protein resource (http://www.uniprot.
org) (Entry: O43490). The template for sequence 
alignment was identified by searching human PROM1 
on PDB using the BLASTp program. The 3D structure of 
PROM1 (XKD) was created using MODELLER version 
9.17 [56], then the model was viewed using PyMol 
software [57]. The initial coordinates of PROM1, which 
were used in our molecular simulations, were based on 
crystal structure of the template protein (PDB Entry: 
4wid). A mutation of Leu to Pro at position 245th was 
generated in silico from the wild-type crystal structure 
using Pymol software [58]. The general streochemical 
quality of the final modeled protein structure was 
evaluated using PROCHECK [59], ProSA-web (protein 
structure Analysis) [60], RAMPAGE, and QMEAN 
analysis [61]. 

Molecular dynamic simulation

Molecular dynamics (MD) simulations investigate 
the motions and fluctuations of a system containing 
discrete particles under the impact of internal and external 
forces. The role of this application base on this method 
is broad, ranging from atoms to a molecule. The initial 
3D structure made from modeler was optimized using 
molecular dynamic simulation. The 130 ns simulations 
of p.L245P on the active functional extracellular domain 
of PROM1 (position 179-433, Supplementary Figure 3) 
were performed using the GROMCS molecular dynamics 
package version 5.1.3, which, on the Centos linux system, 
implements GROMOS96 package version 43a1 force 
field. pdb2gmx tools from GROMACS software package 
was applied to generate the topology file. The 3D human 
PROM1 was surrounded by a cubic periodic box of the 
simple point charge model of water molecules with a 
margin of 1.0 Å along each dimension. [62]. In detail, 
the number of water molecules in the cubic cage was 
approximately 120,000. Also, the molecular dynamical 
systematic simulations charges were neutralized by 
using sufficient Na+ and Cl- ions. All covalent bonds to 
hydrogen atoms were constrained using the SHAKE 
algorithm. Electrostatic interactions were calculated 
using the particle-Mesh Ewald algorithm [63] with a 
cutoff of 10 Å for Lenard-Jones interactions. Periodic 
boundary conditions were applied to avoid edge effects. 
Prior to molecular dynamic production, 50,000 steps of 
steepest-descent minimization were used to the solvent. 
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After energy minimization, the system was equilibrated 
with NVT (isochoric-isothermal) and NPT (isothermal-
isobaric) ensembles under the condition of position 
restraint for heavy atoms, with 100 ps with gradual 
heating from 300 K [64]. In addition, stable salt bridges 
were extracted based on a distance cut-off value of 0.4 
nm. The atomic coordinates of each model were saved 
every 1-ps for the analysis. The temperature and pressure 
coupling was applied using the modified Berendsen 
thermostat algorithm [65] at 300 K and Parrinello-Rahman 
algorithm [66] at 1 atmosphere with a link constant of 0.1 
ps and time duration of 100 ps. The comparative analyses 
were saved every 1 ps time interval for further analyses, 
including RMSF for all human PROM1 structures. 
RMSD, secondary structure modifications, Rg, hydrogen 
bond occupancy, secondary structure analysis, PCA, 
and clustering analysis were performed for the wild-
type and mutated form [67]. Additionally, the structural 
changes were visualized using VMD version 1.9.2 and 
Pymol software. The plots were conducted using xmgrace 
tool and secondary structure analysis, by DSSP of the 
GROMACS packages, respectively. Furthermore, a 130 ns 
molecular modeling trajectory of the system was obtained 
under constant pressure at 300 K using the GROMACS 
software package.

Residue interaction networks of the wild- and 
mutant-type

To analyze the mutatant residue on protein sequence, 
we used the open source software platform, Cytoscape 
v3.3.0 [35]. Cytoscape allows us to map the various 
‎interactions of wild- and mutant-type residue sources 
data in RIN models. In this regard, the average structure 
derived from the 130 ns trajectory of each system, wild 
type and L245P mutant was used to construct the RINs 
in 2D graphs using RING 2.0 web server [68]. This is a 
new version of the RING software for the identification 
of covalent and non-covalent bonds in protein structure. 
After determining the interaction between amino acids, 
RING used several tools to define non-covalent interaction 
between the amino acids, including hydrogen bonds, salt 
bridges, and interaction in closest atom. We mapped 
the information about the protein mutation and natural 
variation of a PROM1 protein onto all the corresponding 
nodes in the pathway. All the processed residues 
(functional extracellular domain of PROM1 in position 
179-433) were separately imported into Cytoscape 3.3.0 to 
reconstruct amino acidic networks using RINalyzer plug-
in software [36]. Therefore, the Cytoscape archive files 
were constructed by ‎submitting the crystal structure of 
both the wild type and the mutant protein to RING server 
[37].

Analysis of molecular dynamic trajectory

The trajectory files were analyzed using gmx rms, 
gmx rmsf, and gmx gyrate GROMACS utilities to obtain 
the RMSD, RMSF, and Rg. The numbers of distinct 
intermolecular hydrogen bonds formed between all 
residues during the simulation were calculated using gmx 
hbond utility. Secondary structure analyses using DSSP 
module were performed for both the wild type and L245P 
mutant over the whole simulation period. 

Circular dichroism spectroscopy analysis

The secondary structure of the wild-type and 
p.L245P mutant system were determined by CD 
spectroscopy during 130 ns modeling using DichroCalc 
server [69]. CD spectroscopy is a well-established 
technique for measuring the secondary structure, 
dynamics, and folding pathways of proteins ‎in the “far-
UV” spectral region (190-250 nm); where alpha-helix, 
beta-sheet, and random coil structures each give rise to a 
characteristic shape and magnitude of CD spectrum [70]. 

Principal component analysis (PCA)

PCA is a method that reduces the complexity of the 
data and extracts the concerted motion that are essentially 
correlated and presumably meaningful for biological 
functions during simulations. PCA was performed to 
determine the correlated motions of the residues to a 
set of linearly uncorrelated variables named principal 
components that are significant for the biological function 
of the protein during the course of simulation [38]. In PCA 
analysis, a variance/covariance matrix was constructed 
from the trajectories after the removal of the rotational and 
translational movements. PCA is a widely used protocol 
to simplify eigenvectors and eigenvalues of bio-molecules 
from the molecular modeling trajectories by relating it to 
the dimensional reduction method. GROMACS utility 
tools were used to perform PCA, with using normal mode 
wizard of VMD. PCA scatter plots were then created by 
the xmgrace program.

Free energy landscape (FEL)

FEL promotes the dynamic energy distribution 
and structure-function correlation of mutational residues 
variable in the protein system, which helps to visualize the 
stability of wild and mutant conformations for a protein 
[39]. The free energy minima regularly characterizes 
the conformational group in the stable states. The free 
energy barriers represented by the transient states of free 
energy values of backbone atoms in different systems, 
according the Gibb’s free energy method [40]. In this 
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study, we compared FEL values to identify the dominant 
conformational states, function of the enthalpy, and 
entropy of protein in wild and mutant conformations of 
PROM1 protein by using GROMACS package software 
based on the PCA data. 

Abbreviations

STGD, Stargardt disease; MD, macular 
degeneration/dystrophy; adSTGD, autosomal dominant 
trait of STGD; PC, principal component; FEL, Free 
energy landscapes; FA, fundus autofluorescence; ERGs, 
Electroretinograms; OCT, optical coherence tomography; 
TES, targeted exome sequencing; SNP, single nucleotide 
polymorphism; INDELs, Insertions/Deletions; MAF, 
minor allele frequency; p.L245P, Leu at residue 245; 
bHLH-Zip, basic helix-loop-helix leucine zipper domain; 
SIFT, scale-invariant feature transform; QMEAN, 
quantitative model energy analysis; RMSD, root mean 
square deviation; ns, nanosecond; RMSF, root mean 
square fluctuation; DSSP, defined secondary structure 
of protein; CD, Circular dichroism; gDNA, genomic 
DNA; RINs, residue interaction networks; PCA, principal 
component analysis; BWA, Burrows-Wheeler Aligner; 
GATK, Genome Analysis Toolkit; PCR, polymerase chain 
reaction; HOPE, Have Your Protein Explained.

Author contributions

J.F. was in charge of idea and concept of the 
paper. R.C. and Y.L. performed experiments of NGS 
and analyzed data. J.C. L.Y., H. Z., and C.W. performed 
experiments of sample collection, DNA extraction, PCR 
amplification, Sanger sequencing, and data analysis. S.I. 
and M.D.S. performed multiple molecular dynamics 
analyses. J.F., S.I. and S.F. wrote the manuscript. J.F., S.I., 
R.C., D.Z., M.D.S. and H.C. designed project and edited 
the manuscript. S.F., M. K., and X.Z., edited and revised 
the manuscript. H.L. and C. D. recruited the clinical 
samples. All authors read and approved the manuscript.

CONFLICTS OF INTEREST

The authors declare no conflict of interest. 

FUNDING

This work was supported in part by the National 
Natural Science Foundation of China (30371493, 
81172049, 81672887).

PATIENT CONSENT

Obtained.

REFERENCES

1.	 Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, 
Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, 
Rattner A, Smallwood P, Li Y, et al. A photoreceptor cell-
specific ATP-binding transporter gene (ABCR) is mutated 
in recessive Stargardt macular dystrophy. Nat Genet. 1997; 
15: 236-46.

2.	 Maugeri A, Meire F, Hoyng CB, Vink C, Van Regemorter 
N, Karan G, Yang Z, Cremers FP, Zhang K. A novel 
mutation in the ELOVL4 gene causes autosomal dominant 
Stargardt-like macular dystrophy. Invest Ophthalmol Vis 
Sci. 2004; 45: 4263-7.

3.	 Fritsche LG, Fleckenstein M, Fiebig BS, Schmitz-
Valckenberg S, Bindewald-Wittich A, Keilhauer CN, 
Renner AB, Mackensen F, Mossner A, Pauleikhoff D, 
Adrion C, Mansmann U, Scholl HP, et al. A subgroup 
of age-related macular degeneration is associated with 
mono-allelic sequence variants in the ABCA4 gene. Invest 
Ophthalmol Vis Sci. 2012; 53: 2112-8.

4.	 Sun H, Nathans J. ABCR: rod photoreceptor-specific ABC 
transporter responsible for Stargardt disease. Methods 
Enzymol. 2000; 315: 879-97.

5.	 Cideciyan AV, Swider M, Aleman TS, Sumaroka A, 
Schwartz SB, Roman MI, Milam AH, Bennett J, Stone EM, 
Jacobson SG. ABCA4-associated retinal degenerations 
spare structure and function of the human parapapillary 
retina. Invest Ophthalmol Vis Sci. 2005; 46: 4739-46.

6.	 Molday RS, Molday LL. Identification and characterization 
of multiple forms of rhodopsin and minor proteins in 
frog and bovine rod outer segment disc membranes. 
Electrophoresis, lectin labeling, and proteolysis studies. J 
Biol Chem. 1979; 254: 4653-60.

7.	 Mandal MN, Ambasudhan R, Wong PW, Gage PJ, Sieving 
PA, Ayyagari R. Characterization of mouse orthologue of 
ELOVL4: genomic organization and spatial and temporal 
expression. Genomics. 2004; 83: 626-35.

8.	 Bernstein PS, Tammur J, Singh N, Hutchinson A, Dixon M, 
Pappas CM, Zabriskie NA, Zhang K, Petrukhin K, Leppert 
M, Allikmets R. Diverse macular dystrophy phenotype 
caused by a novel complex mutation in the ELOVL4 gene. 
Invest Ophthalmol Vis Sci. 2001; 42: 3331-6.

9.	 Permanyer J, Navarro R, Friedman J, Pomares E, Castro-
Navarro J, Marfany G, Swaroop A, Gonzalez-Duarte 
R. Autosomal recessive retinitis pigmentosa with early 
macular affectation caused by premature truncation in 
PROM1. Invest Ophthalmol Vis Sci. 2010; 51: 2656-63.

10.	 Yang Z, Chen Y, Lillo C, Chien J, Yu Z, Michaelides M, 
Klein M, Howes KA, Li Y, Kaminoh Y, Chen H, Zhao 
C, Chen Y, et al. Mutant prominin 1 found in patients 
with macular degeneration disrupts photoreceptor disk 
morphogenesis in mice. J Clin Invest. 2008; 118: 2908-16.

11.	 Michaelides M, Gaillard MC, Escher P, Tiab L, Bedell M, 
Borruat FX, Barthelmes D, Carmona R, Zhang K, White E, 



Oncotarget139www.impactjournals.com/oncotarget

McClements M, Robson AG, Holder GE, et al. The PROM1 
mutation p.R373C causes an autosomal dominant bull’s eye 
maculopathy associated with rod, rod-cone, and macular 
dystrophy. Invest Ophthalmol Vis Sci. 2010; 51: 4771-80.

12.	 Kniazeva M, Chiang MF, Morgan B, Anduze AL, Zack 
DJ, Han M, Zhang K. A new locus for autosomal dominant 
stargardt-like disease maps to chromosome 4. Am J Hum 
Genet. 1999; 64: 1394-9.

13.	 Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, 
Biancotti JC, Hutnick L,  Krueger RC Jr, Fan G, de Vellis 
J, Sun YE. CD133+ neural stem cells in the ependyma of 
mammalian postnatal forebrain. Proc Natl Acad Sci U S A. 
2008; 105: 1026-31.

14.	 Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner 
J, Milde T, St Clair R, Baljevic M, White I, Jin DK, 
Chadburn A, Murphy AJ, Valenzuela DM, et al. CD133 
expression is not restricted to stem cells, and both CD133+ 
and CD133- metastatic colon cancer cells initiate tumors. J 
Clin Invest. 2008; 118: 2111-20.

15.	 Fargeas CA, Joester A, Missol-Kolka E, Hellwig A, 
Huttner WB, Corbeil D. Identification of novel Prominin-1/
CD133 splice variants with alternative C-termini and their 
expression in epididymis and testis. J Cell Sci. 2004; 117: 
4301-11.

16.	 Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, 
Holden JT, Bray RA, Waller EK, Buck DW. A novel five-
transmembrane hematopoietic stem cell antigen: isolation, 
characterization, and molecular cloning. Blood. 1997; 90: 
5013-21.

17.	 Jaszai J, Fargeas CA, Florek M, Huttner WB, Corbeil D. 
Focus on molecules: prominin-1 (CD133). Exp Eye Res. 
2007; 85: 585-6.

18.	 Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler 
JC, Bridges RJ, Kumaramanickavel G, John S, Nancarrow 
D, Roper K, Weigmann A, Huttner WB, Denton MJ. A 
frameshift mutation in prominin (mouse)-like 1 causes 
human retinal degeneration. Hum Mol Genet. 2000; 9: 27-
34.

19.	 Zhang X, Ge X, Shi W, Huang P, Min Q, Li M, Yu X, 
Wu Y, Zhao G, Tong Y, Jin ZB, Qu J, Gu F. Molecular 
diagnosis of putative Stargardt disease by capture next 
generation sequencing. PLoS One. 2014; 9: 95528.

20.	 Zhang Q, Zulfiqar F, Xiao X, Riazuddin SA, Ahmad 
Z, Caruso R, MacDonald I, Sieving P, Riazuddin S, 
Hejtmancik JF. Severe retinitis pigmentosa mapped to 4p15 
and associated with a novel mutation in the PROM1 gene. 
Hum Genet. 2007; 122: 293-9.

21.	 Kleinman ME, Ambati J. Fifty years later: the disk goes to 
the prom. J Clin Invest. 2008; 118: 2681-4.

22.	 Pras E, Abu A, Rotenstreich Y, Avni I, Reish O, Morad 
Y, Reznik-Wolf H, Pras E. Cone-rod dystrophy and a 
frameshift mutation in the PROM1 gene. Mol Vis. 2009; 
15: 1709-16.

23.	 Kabsch W, Sander C. Dictionary of protein secondary 

structure: pattern recognition of hydrogen-bonded and 
geometrical features. Biopolymers. 1983; 22: 2577-637.

24.	 Vasireddy V, Wong P, Ayyagari R. Genetics and molecular 
pathology of Stargardt-like macular degeneration. Prog 
Retin Eye Res. 2010; 29: 191-207.

25.	 Park SH, Ahn YJ, Chae H, Kim Y, Kim MS, Kim M. 
Molecular analysis of the CHST6 gene in Korean patients 
with macular corneal dystrophy: Identification of three 
novel mutations. Mol Vis. 2015; 21: 1201-9.

26.	 Battu R, Verma A, Hariharan R, Krishna S, Kiran R, Jacob 
J, Ganapathy A, Ramprasad VL, Kumaramanickavel G, 
Jeyabalan N, Ghosh A. Identification of Novel Mutations 
in ABCA4 Gene: Clinical and Genetic Analysis of Indian 
Patients with Stargardt Disease. Biomed Res Int. 2015; 12: 
940864.

27.	 Yang P, Chiang PW, Weleber RG, Pennesi ME. Autosomal 
Dominant Retinal Dystrophy With Electronegative 
Waveform Associated With a Novel RAX2 Mutation. 
JAMA Ophthalmol. 2015; 133: 653-61.

28.	 Arno G, Hull S, Robson AG, Holder GE, Cheetham 
ME, Webster AR, Plagnol V, Moore AT. Lack of 
Interphotoreceptor Retinoid Binding Protein Caused by 
Homozygous Mutation of RBP3 Is Associated With High 
Myopia and Retinal Dystrophy. Invest Ophthalmol Vis Sci. 
2015; 56: 2358-65.

29.	 Agbaga MP, Tam BM, Wong JS, Yang LL, Anderson 
RE, Moritz OL. Mutant ELOVL4 that causes autosomal 
dominant stargardt-3 macular dystrophy is misrouted to rod 
outer segment disks. Invest Ophthalmol Vis Sci. 2014; 55: 
3669-80.

30.	 Karan G, Yang Z, Howes K, Zhao Y, Chen Y, Cameron 
DJ, Lin Y, Pearson E, Zhang K. Loss of ER retention 
and sequestration of the wild-type ELOVL4 by Stargardt 
disease dominant negative mutants. Mol Vis. 2005; 11: 657-
64.

31.	 Arno G, Agrawal SA, Eblimit A, Bellingham J, Xu M, 
Wang F, Chakarova C, Parfitt DA, Lane A, Burgoyne T, 
Hull S, Carss KJ, Fiorentino A, et al. Mutations in REEP6 
Cause Autosomal-Recessive Retinitis Pigmentosa. Am J 
Hum Genet. 2016; 99: 1305-15.

32.	 Zhang Q, Xu M, Verriotto JD, Li Y, Wang H, Gan L, Lam 
BL, Chen R. Next-generation sequencing-based molecular 
diagnosis of 35 Hispanic retinitis pigmentosa probands. Sci 
Rep. 2016; 6: 32792.

33.	 Ballester LY, Luthra R, Kanagal-Shamanna R, Singh RR. 
Advances in clinical next-generation sequencing: target 
enrichment and sequencing technologies. Expert Rev Mol 
Diagn. 2016; 16: 357-72.

34.	 Palejwala NV, Gale MJ, Clark RF, Schlechter C, Weleber 
RG, Pennesi ME. Insights into Autosomal Dominant 
Stargardt-Like Macular Dystrophy through Multimodality 
Diagnostic Imaging. Retina. 2016; 36: 119-30.

35.	 Shannon P, Markiel A, Ozier O, Baliga NS, Wang 
JT, Ramage D, Amin N, Schwikowski B, Ideker T. 



Oncotarget140www.impactjournals.com/oncotarget

Cytoscape: a software environment for integrated models 
of biomolecular interaction networks. Genome Res. 2003; 
13: 2498-504.

36.	 Baryshnikova A. Exploratory Analysis of Biological 
Networks through Visualization, Clustering, and Functional 
Annotation in Cytoscape. Cold Spring Harb Protoc. 2016; 
2016: 77644.

37.	 Martin AJ, Vidotto M, Boscariol F, Di Domenico T, Walsh 
I, Tosatto SC. RING: networking interacting residues, 
evolutionary information and energetics in protein 
structures. Bioinformatics. 2011; 27: 2003-5.

38.	 Mongan J. Interactive essential dynamics. J Comput Aided 
Mol Des. 2004; 18: 433-6.

39.	 Frauenfelder H, Sligar SG, Wolynes PG. The energy 
landscapes and motions of proteins. Science. 1991; 254: 
1598-603.

40.	 Tournier AL, Smith JC. Principal components of the protein 
dynamical transition. Phys Rev Lett. 2003; 91: 208106.

41.	 Gopisetty G, Xu J, Sampath D, Colman H, Puduvalli VK. 
Epigenetic regulation of CD133/PROM1 expression in 
glioma stem cells by Sp1/myc and promoter methylation. 
Oncogene. 2013; 32: 3119-29.

42.	 Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/
Prominin-1. Int J Biochem Cell Biol. 2005; 37: 715-9.

43.	 Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian 
CA, Usenko JK, Costa C, Zhang F, Guo X, Rafii S. 
Alternative promoters regulate transcription of the gene that 
encodes stem cell surface protein AC133. Blood. 2004; 103: 
2055-61.

44.	 Arrigoni FI, Matarin M, Thompson PJ, Michaelides 
M, McClements ME, Redmond E, Clarke L, Ellins E, 
Mohamed S, Pavord I, Klein N, Hunt DM, Moore AT, et 
al. Extended extraocular phenotype of PROM1 mutation 
in kindreds with known autosomal dominant macular 
dystrophy. Eur J Hum Genet. 2011; 19: 131-7.

45.	 Zhu L, Cheng J, Zhou B, Wei C, Yang W, Jiang D, Ijaz I, 
Tan X, Chen R, Fu J. Diagnosis for choroideremia in a large 
Chinese pedigree by nextgeneration sequencing (NGS) and 
noninvasive prenatal testing (NIPT). Mol Med Rep. 2017; 
15: 1157-64.

46.	 Yang WC, Zhu L, Qiu YM, Zhou BX, Cheng JL, Wei CL, 
Chen HC, Li LY, Fu XD, Fu JJ. Isolation and analysis 
of cell-free fetal DNA from maternal peripheral blood in 
Chinese women. Genet Mol Res. 2015; 14: 18078-89.

47.	 Fu J, Li L, Lu G. Relationship between microdeletion on Y 
chromosome and patients with idiopathic azoospermia and 
severe oligozoospermia in the Chinese. Chin Med J (Engl). 
2002; 115: 72-5.

48.	 Xiu X, Yuan J, Deng X, Xiao J, Xu H, Zeng Z, Guan L, 
Xu F, Deng S. A novel COL4A5 mutation identified in a 
Chinese Han family using exome sequencing. Biomed Res 
Int. 2014; 2014: 186048.

49.	 Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. 
MutationTaster evaluates disease-causing potential of 

sequence alterations. Nat Methods. 2010; 7: 575-6.
50.	 Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional 

effect of human missense mutations using PolyPhen-2. Curr 
Protoc Hum Genet. 2013; Chapter 7: Unit7, 20.

51.	 Kumar P, Henikoff S, Ng PC. Predicting the effects of 
coding non-synonymous variants on protein function using 
the SIFT algorithm. Nat Protoc. 2009; 4: 1073-81.

52.	 Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, 
Vriend G. Protein structure analysis of mutations causing 
inheritable diseases. An e-Science approach with life 
scientist friendly interfaces. BMC Bioinformatics. 2010; 
11: 548.

53.	 Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas 
PD. PANTHER version 10: expanded protein families and 
functions, and analysis tools. Nucleic Acids Res. 2016; 44: 
336-42.

54.	 Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting 
stability changes upon mutation from the protein sequence 
or structure. Nucleic Acids Res. 2005; 33: 306-10.

55.	 Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton 
GJ. Jalview Version 2-a multiple sequence alignment editor 
and analysis workbench. Bioinformatics. 2009; 25: 1189-
91.

56.	 Webb B, Sali A. Comparative Protein Structure Modeling 
Using MODELLER. Curr Protoc Protein Sci. 2016; 86: 
291-3.

57.	 Fiser A, Sali A. Modeller: generation and refinement 
of homology-based protein structure models. Methods 
Enzymol. 2003; 374: 461-91.

58.	 Pettersen EF, Goddard TD, Huang CC, Couch GS, 
Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera-a 
visualization system for exploratory research and analysis. 
J Comput Chem. 2004; 25: 1605-12.

59.	 Laskowski RA, MacArthur MW, Moss DS, Thornton 
JM. PROCHECK: a program to check the stereochemical 
quality of protein structures. Jnl Applied Crystallography. 
1993; 26: 283-91.

60.	 Wiederstein M, Sippl MJ. ProSA-web: interactive web 
service for the recognition of errors in three-dimensional 
structures of proteins. Nucleic Acids Res. 2007; 35: 407-10.

61.	 Benkert P, Kunzli M, Schwede T. QMEAN server for 
protein model quality estimation. Nucleic Acids Res. 2009; 
37: 510-4.

62.	 Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J. 
Interaction models for water in relation to protein hydration. 
In: Pullman, ed. Intermolecular forces: Proceedings of the 
Fourteenth Jerusalem Symposium on Quantum Chemistry 
and Biochemistry. 1981; Springer, 331-42.

63.	 Cheatham TI, Miller J, Fox T, Darden T, Kollman P. 
Molecular dynamics simulations on solvated biomolecular 
systems: the particle mesh Ewald method leads to stable 
trajectories of DNA, RNA, and proteins. Journal of the 
American Chemical Society. 1995; 117: 4193-4.

64.	 Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a 



Oncotarget141www.impactjournals.com/oncotarget

linear constraint solver for molecular simulations. Journal 
of computational chemistry. 1997; 18: 1463-72.

65.	 Berendsen HJ, Postma JPM, van Gunsteren WF, DiNola A, 
Haak J. Molecular dynamics with coupling to an external 
bath. The Journal of chemical physics. 1984; 81: 3684-90.

66.	 Parrinello M, Rahman A. Polymorphic transitions in single 
crystals: A new molecular dynamics method. Journal of 
Applied physics. 1981; 52: 7182-90.

67.	 Roe DR, Cheatham TE 3rd. PTRAJ and CPPTRAJ: 
Software for Processing and Analysis of Molecular 
Dynamics Trajectory Data. J Chem Theory Comput. 2013; 
9: 3084-95.

68.	 Piovesan D, Minervini G, Tosatto SC. The RING 2.0 web 
server for high quality residue interaction networks. Nucleic 
Acids Res. 2016; 44: 367-74.

69.	 Bulheller BM, Hirst JD. DichroCalc--circular and linear 
dichroism online. Bioinformatics. 2009; 25: 539-40.

70.	 Miles AJ, Wallace BA. Circular dichroism spectroscopy of 
membrane proteins. Chem Soc Rev. 2016; 45: 4859-72.


