The gut microbiome consists of the shared commensal, symbiotic, and pathogenic microbial associates (GBA), is a complex relationship whose treating not only various gut disorders, such as irritable bowel syndrome (IBS) or behavioral health disorders like general depression and anxiety, but also central nervous system (CNS) disorders, such as Alzheimer's (AD) and Parkinson's (PD) diseases. The purpose of this review is to summarize what is currently known about the gut microbiome, how it is connected to the development of disease pathology and to identify the bacterial and biochemical targets/pathways that should be the focus of future research. In identifying, exploring, and understanding the mechanisms behind the activity and propagation of the gut microbiome, this will provide us new insights that are likely to pave the way for increased novel therapeutic strategies.

- Dysbiosis in the gut microbiome and microbial metabolites is known to be associated with abnormalities in the gut mucosal barrier integrity and enhanced pro-inflammatory cytokines
- Changes in the aging gut microbiome that impact the gut-brain axis can also lead to problems with neural, endocrine, nutrient, and immunological signals between the gut and the brain via the enteric nervous system
- It is possible to use a pro-biotics, pre-biotics, and psycho-biotics as a treatment to aid in slowing psychological/behavioral decline linked to gut dysbiosis or signaling problems between the ENS/CNS
- It has been found that Fecalibacterium and Butyryrobacter, which are potentially probiotic genera associated with inflammation suppression, and butyrate production, respectively, were higher in cognitively unimpaired subjects
- Psycho-biotics are beneficial bacteria (a class of probiotics) or support for such bacteria (probiotics) that influence bacteria-brain relationships
- Elevated serum levels of C-reactive protein (CRP) in middle age is associated with an increased risk for both Alzheimer’s Disease and vascular dementia, which supports the theory that inflammatory markers are involved in dementia and act through both peripheral and cerebral vascular pathways
- Age-related changes in microbial composition and metabolism are consistent with the concept of ‘inflam-aging,’ which associates chronic low-grade inflammation as a common basis for a widespread range of age-related pathologies, including cognitive decline, neurodegeneration, general CNS disease progression, and age-related cognitive decline

Lessons Learned

- In aging, the blood-brain barrier begins to weaken, facilitating the allowance of a large spectrum of pathogens (viruses, bacteria, fungi), immune cells, and their products into the brain
- Dietary changes, such as including more vegetables containing polyphenols and monounsaturated fatty acids has shown to be beneficial in improving verbal fluency and memory
- Variation of gut microbiota through personalized diet or beneficial microbiota intervention alter microbes and their products, including short-chain fatty acids, butyrate production, respectively, were higher in cognitively unimpaired subjects
- Psycho-biotics are beneficial bacteria (a class of probiotics) or support for such bacteria (probiotics) that influence bacteria-brain relationships
- Elevated serum levels of C-reactive protein (CRP) in middle age is associated with an increased risk for both Alzheimer’s Disease and vascular dementia, which supports the theory that inflammatory markers are involved in dementia and act through both peripheral and cerebral vascular pathways
- Age-related changes in microbial composition and metabolism are consistent with the concept of ‘inflam-aging,’ which associates chronic low-grade inflammation as a common basis for a widespread range of age-related pathologies, including cognitive decline, neurodegeneration, general CNS disease progression, and age-related cognitive decline

Analysis of the Gut-Brain Axis in Aging: Implications in Alzheimer Disease

Molly Martin¹, Mary Austin¹, Denah M. Appelt²

Dept of ¹ Psychology, ² Bio-Medical Sciences

Philadelphia College of Osteopathic Medicine, Philadelphia, PA