Direct and Indirect effects of Guggulsterone on the Induction of Beiging in Mature 3T3-L1 Adipocytes

Colette N. Miller, Yusra Azhar, Asish Parmar, Janaiya Samuels, Rangaiah Shashidharamurthy, Srujana Rayalam

1Department of Foods and Nutrition, University of Georgia, Athens, GA 2Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine - GA Campus, Suwanee, GA

Abstract

Phytochemicals have long demonstrated anti-obesity properties in adipocytes. Their ability, however, to induce browning in white adipose tissue is only beginning to emerge. We have recently established that the white adipocyte cell line, 3T3-L1, is capable of beiging under beta-adrenergic conditions. Using this information, we sought to investigate if the plant steroidal guggulsterone (GS) can induce beiging in 3T3-L1. 3T3-L1 preadipocytes were differentiated using established protocols supplemented with insulin-like growth factor and thyroid hormone. Direct effects of GS were measured by treating mature 3T3-L1s for 24 hours. Indirect effects were measured by treating mature 3T3-L1s with conditioned media from GS-treated RAW 264.7 macrophages. Direct treatment of 3T3-L1s with GS resulted in increased lysophosphatidylcholine, increased mitochondrial activity (11%), and increased p62 levels (p < 0.05). A T-box expression by 80% more than control. Furthermore, this was accompanied by increased levels of G protein-coupled leukotriene receptor 1 (GPR17) and its downstream target vanillin-dependent deiodinase 2 (DV2). Treatment of RAW 264.7 macrophages with GS induced a 60% increase in catecholamine release into the media compared to control. Using this conditioned media from macrophages, 3T3-L1 adipocytes increased the expression of DOX2 and UCP1 following 24 hours of incubation. Results from this study demonstrate that GS can potentially induce beiging in white adipose tissue through two distinct mechanisms: (1) direct signaling through the TGR5-cAMP-DIO2 pathway and (2) indirectly through stimulating catecholamine release in macrophages. Thus, it is reasonable to conclude that GS may improve the metabolic capacity of adipose tissue thereby counteracting the effects of obesity.

Research Goals

• Determine if the anti-obesity phytochemical, guggulsterone, can promote mitochondrial biogenesis and beiging in 3T3-L1 adipocytes.
• Investigate if guggulsterone mediates mitochondrial biogenesis through direct or indirect signaling.

Direct Effects of GS on 3T3-L1 Adipocytes

GS induces mitochondrial biogenesis

GS induces adipocyte beiging

Indirect Effects of GS on 3T3-L1 Adipocytes

GS protects against LPS-injury in RAW 264.7 macrophages

Working Model

Conclusions

GS appears to have 2 distinct effects on adipocyte beiging:
1) Direct signaling in adipocytes leading to upregulation of thermogenic/ browning makers and enhanced mitochondrial biogenesis. This effect appears to be partly mediated through TGR5 signaling.
2) Indirect signaling in adipocytes through macrophage M2 polarization and catecholamine secretion.

Financial Support

Funding was provided by the Philadelphia College of Osteopathic Medicine Biomedical Research Program.