Abstract
Anti-inflammatory, anti-oxidant, and anti-cancer effects of xanthohumol (XN), a prenylated chalcone extracted from common hop plants, are gaining attention and research has been expanding on the beneficial effects of this compound. In this study, we have investigated the anti-inflammatory effects of XN using a mouse monocytic cell line, RAW 264.7. We hypothesized that the anti-inflammatory effects of XN are due to M2 polarization of macrophages which, in turn, is mediated partly through the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. RAW 264.7 cells were treated with either 0.1% DMSO or XN at varying concentrations for 24hrs. Cell culture supernatant was collected for ELISA and whole cell lysates were collected for Western blotting experiments. Our results suggest that XN upregulated the secretion of interleukin 10 (IL10), a signature cytokine for M2 polarization, in RAW 264.7 cells in a dose-dependent manner after 24hr. We further demonstrated that XN increased arginase -1 expression, a marker for M2 polarization, and failed to increase inducible nitric oxide synthase (iNOS) expression, a marker for M1 polarization. XN decreased interferon-γ (IFNγ) induced elevation of nitrite release, indicating the inhibitory effects of XN against M1 polarization. Additionally, XN at 25µM increased the secretion of catecholamines from macrophages comparable to interleukin 4 (IL4), an inducer of the M2 phenotype. Finally, XN upregulated the expression of phospho-AMPK in RAW 264.7 cells, indicating the role of AMPK signaling pathway in XN-induced effects. These results provide evidence for the anti-inflammatory properties of XN – mediated induction of M2 polarization. The M2 macrophage mediated anti-inflammatory effects, coupled with catecholamine secretion, and previously anti-angiogenic effects, makes XN an attractive molecule to study its beneficial effects on metabolic disease, like obesity and diabetes, that are associated with underlying chronic, low-grade inflammation.

Macrophages and Obesity
- Obesity is associated with chronic low-grade inflammation.
- Macrophages that reside in the adipose tissue contribute not only to the obesity-induced inflammatory status but also altered metabolism.
- They adapt to their environment by altering their phenotype from anti-inflammatory to pro-inflammatory and the ratio of M1/M2 changes with the onset of obesity.
- During the formation of obesity, ‘classically’ activated, M1 macrophages infiltrate adipose tissue, form crown-like structures, and begin to secrete pro-inflammatory cytokines.
- In the lean state, adipose tissue macrophages are ‘alternatively’ activated, or M2 macrophages, and are characterized by their ability to secrete anti-inflammatory cytokines and catecholamines.
- Thus, the versatile phenotype of adipose tissue macrophages could help maintain adipose tissue homeostasis in the setting of obesity.

Research Goals
- Determine if the anti-inflammatory phytochemical, xanthohumol, can induce macrophages towards the M2 phenotype in RAW 264.7 cells.
- Demonstrate XN-induced upregulation of catecholamine secretion from RAW 264.7 cells.
- Investigate the possible role of AMPK signaling pathway in XN-induced M2 polarization.

Inhibitory effects of XN against M1 polarization
- XN downregulates IFNγ-induced iNOS expression
- XN suppresses nitrite release in IFNγ-stimulated RAW 264.7 macrophages

Conclusions
- XN promotes macrophage polarization towards the anti-inflammatory phenotype as evidenced by the attenuation of M1 markers and an increase in anti-inflammatory cytokines, catecholamine secretion, and M2 markers.
- XN upregulated p-AMPK and arginase –1 expression indicating that XN-mediated macrophage polarization might be partially mediated via the AMPK signaling pathway.

Financial Support
Funding was provided by the Philadelphia College of Osteopathic Medicine Biomedical Research Program.