The effects of Caffeic Acid Phenethyl Ester (CAPE) on oxidative stress and hypoxia-induced cell damage

Sarah Martin, Andrew Castellano, Chijioke Uzoaru, Jonathan Lim, Nicholas Carvis, Peter Wieczorek, Robert Barsotti, Lindon H. Young, Qian Chen
Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine
4170 City Avenue, Philadelphia, PA 19131

Introduction
Myocardial Infarction causes irreversible cell death in heart. Reperfusion to ischemic area can salvage dying heart tissue. However, reperfusion also leads to additional cell damage (1). Ischemia/Reperfusion (I/R) injury is caused by massive release of reactive oxygen species from intracellular (e.g., uncoupled electron transport chain) or extracellular sources (e.g., infiltrated neutrophils), which further leads to cell damage and cell death. To date, there is no clinical treatment available to mitigate reperfusion injury. Caffeic Acid Phenethyl Ester (CAPE, Fig1), a natural component of propolis from honeybee hives, exhibits anti-oxidant and anti-inflammatory effects (2). Our lab has shown that CAPE given during reperfusion exerted cardioprotection in an isolated rat heart I (30 min)/R (60 min) injury model (3). However, the other effects and underlying mechanisms of CAPE under I/R conditions needs to be further determined. In this study, we evaluated the effects of CAPE on oxidative stress caused by activated rat neutrophils or hind limb I/R. We also determined the effects of CAPE on a hypoxia mimetic, cobalt chloride (CoCl₂), induced H9C2 cardiac myoblasts.

Hypothesis
We hypothesized that CAPE would reduce superoxide production in isolated rat neutrophils. We also hypothesized that CAPE would reduce blood hydrogen peroxide levels in a hind limb I/R rat model. Lastly, given reduction in oxidative stress, CAPE would be cardioprotective against CoCl₂-induced cell death in H9C2 cardiac myoblasts.

Methods
Measurement of superoxide (SO) Release from Rat Neutrophils: Rat neutrophils were collected by intraperitoneal lavage after intraperitoneal injection of 0.5% glycerol. The SO release from neutrophils was measured spectrophotometrically (model 260 Gilford; Nova Biotech, El Cajon, CA) by the reduction of ferricytochrome c (Sigma Chemical Co.) as previously described. The effects of CAPE (0.5-40 µM) on phorbol-12-myristate-13-acetate (PMA, 30 µM) stimulated SO release from neutrophils (5 × 10⁶) were calculated by the peak change (360 s) of absorbance at 550 nm from time 0.

Real-time Measurement of blood H₂O₂ levels in a hind limb I/R rat model: We have developed an innovative technique to real-time measure blood H₂O₂ levels from femoral veins: one subjected to I/R while the other is used as a non-ischemic sham control (4). The calibrated H₂O₂ microsensors (100µm, WPI inc.) connected to a free radical analyzer (Apollo 4000, WPI inc.) are inserted into a catheter placed inside each femoral vein. Ischemia of femoral circulation in one limb was induced by clamping the femoral artery/vein for 30 minutes, subsequently reperfusion was introduced for 60 min by removing the clamp. Drugs (CAPE, 0.95 mg/Kg, equivalent to 40 µM in blood) or saline (for non-drug control group) was applied through jugular vein catheter at the beginning of reperfusion. We continuously recorded blood H₂O₂ levels in pA and collect the data at 5 min. intervals during a 15 min. baseline period, 30 min. ischemia and 60 min. reperfusion. After experiments, the changes in blood H₂O₂ levels were calculated as relative H₂O₂ blood levels (µM) between I/R limb and sham limb after correction to the calibration curve of H₂O₂ microsensors.

Results

Figure 1. CAPE chemical structure.

Figure 2. Dose dependent effects of CAPE (0.5-40 µM) on neutrophil SO release stimulated by PMA (30 nM).

Figure 3. Effects of CAPE (40 µM) on blood H₂O₂ levels during reperfusion compared to saline control. *p<0.05 vs saline control.

Figure 4. Representative pictures of H9C2 cells (10X) under control, 800 µM CoCl₂, and 10 µM CAPE pretreatment with 800 µM CoCl₂.

Figure 5. Dose-dependent effects of CoCl₂ (200 to 1000 µM) on H9C2 cell viability compared to control.

Figure 6. Dose-dependent effects of CAPE pretreatment (0.5 to 20 µM) on CoCl₂ (800 µM)-induced cell death.

Conclusions
We found that CAPE dose-dependently reduced SO release from PMA activated neutrophils. We also demonstrated that CAPE given during reperfusion significantly reduced blood H₂O₂ levels in hind limb I/R model. Lastly, CAPE pretreatment mitigated CoCl₂ induced H9C2 cell death. In summary, CAPE exerted anti-oxidant effects to reduce oxidative stress, which may protect cardiomyocytes from a hypoxia insult. The underlying mechanisms will be determined in future experiment.

References
4. Lindon H. Young, et. al. Direct measurement of hydrogen peroxide (H₂O₂) or nitric oxide (NO) release: A powerful tool to assess real-time free radical production in biological models. American Journal of Biomedical Sciences. (2011); 3(1):40-49.

Acknowledgements
This research was supported by the Division of Research, Department of Bio-Medical Sciences, and Center for Chronic Disorders of Aging at Philadelphia College of Osteopathic Medicine.