Title

Bigendothelin-1 (1-21) fragment during early sepsis modulates tau, p38-MAPK phosphorylation and nitric oxide synthase activation

Document Type

Article

Publication Date

2005

Abstract

Earlier we have demonstrated that inhibition of endothelin biosynthesis ameliorates endotoxemia-induced inducible nitric oxide synthase (iNOS) activation and phosphorylation of p38-mitogen activated protein kinase (pp38-MAPK). Therefore, in the present study, we tested the hypothesis that activation of endothelin (ET)-1 biosynthesis using bigET-1 during early sepsis would upregulate iNOS and affect myocardial function in the rat. Male Sprague-Dawley rats (350-400 g) were anesthetised using Nembutal® (50 mg/kg, i.p.) and jugular vein, tail artery (Mean arterial pressure, MAP) and right carotid arteries (advanced to left ventricle, LV) were cannulated. The rats were randomly divided into saline-, bigET-1- and C-terminal fragment of bigET-1(bigET-1(22-38))-treated groups. Sepsis was induced using i.p. injection of cecal inoculum obtained from a donor rat (200 mg/kg in 5 ml 5% sterile dextrose water, D 5W). Sham animals received an i.p. injection of D 5W (5 ml/kg). MAP and LVP were recorded and cardiodynamic parameters were calculated at 0, 2, 6, 12 and 24 h post sham or sepsis-induction. A significant elevation in LV isovolumic relaxation rate constant (tau), LV end diastolic pressure (LVEDP) and rate pressure product (RPP) was observed in vehicle-treated septic group at 24 h. BigET-1 significantly increased concentration of LV ET-1 both in sham and septic groups. BigET-1 elevated tau and LVEDP both in sham and septic animals as early as 12 h which persisted through 24 h. However, bigET-1(22-38) elevated LVEDP in septic group at 24 h but not in sham group. BigET-1 accentuated the levels of plasma nitric oxide byproduct (NOx) levels in both sham and septic animals at 6, 12 and 24 h. Sepsis increased myocardial iNOS at 24 h. BigET-1 significantly upregulated expression of myocardial iNOS and pp38-MAPK. The data suggest that increased substrate availability for ET-1 at the time of sepsis-induction contributes in diastolic dysfunction, iNOS activation and p38-MAPK phosphorylation. © Springer 2005.

Publication Title

Molecular and cellular biochemistry

Volume

271

Issue

42006

First Page

225

Last Page

237

Comments

This article was published in Molecular and cellular biochemistry, Volume 271, Issue 42006, Pages 225-237.

The published version is available at http://dx.doi.org/10.1007/s11010-005-6416-3.

Copyright © 2005 Springer.

This document is currently not available here.

COinS