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ABSTRACT 

Cardioprotective Effects of Mitochondrial-Targeted Antioxidants  
in Myocardial Ischemia/Reperfusion (I/R) Injury 

Reactive oxygen species (ROS) generated during myocardial I/R contribute to 

post-reperfused cardiac contractile dysfunction. Damaged cardiomyocyte 

mitochondria are major sites of excess ROS generation during reperfusion. 

We hypothesized that reducing mitochondrial ROS formation should attenuate 

myocardial I/R injury and thereby improve function of isolated perfused rat 

hearts subjected to I(30min)/R(45min) compared to untreated I/R hearts. 

Mitoquinone (MitoQ, MW=579g/mol; complexed with cyclodextrin 

(MW=1135g/mol) to improve water solubility, total MW=1714g/mol), a 

coenzyme Q derivative, and SS-31 (Szeto-Schiller) peptide ((D-Arg)-Dmt-Lys-

Phe-Amide, MW=639g/mol, Genemed Synthesis, Inc., San Antonio, TX), an 

alternating cationic-aromatic peptide, are selective mitochondrial ROS 

inhibitors which significantly improved post-reperfused cardiac function 

compared to untreated I/R controls in this study (p<0.05). MitoQ elicits 

antioxidant effects through the recycling of ubiquinone to ubiquinol, whereas 

SS-31 utilizes an antioxidant dimethyltyrosine residue. Improvement in post-

reperfused cardiac function by MitoQ or SS-31 was associated with a 

significant decrease in myocardial tissue infarct size compared to untreated 

I/R hearts (p<0.01). These results suggest mitochondrial-derived ROS are 

important contributors to I/R injury, and MitoQ or SS-31 when administered at 

reperfusion may potentially augment the benefits of angioplasty or 
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thrombolytic treatment in the clinical setting for myocardial infarction, where 

pretreatment may not be a practical option. 
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INTRODUCTION 

The Clinical Setting of Myocardial I/R 

Ischemic heart disease is the leading cause of morbidity and mortality in 

the industrialized world and also is the leading cause of mortality in the United 

States, accounting for nearly 20% of all deaths in the United States(1-5). Acute 

myocardial infarction can progress into persisting conditions of morbidity, such as 

heart failure(5, 6). During myocardial ischemia the coronary blood flow is 

interrupted, depriving cardiomyocytes of oxygen (O2), glucose, and fatty acids. 

Ischemia lasting for 30 minutes or longer will result in irreversible cardiac 

damage(7). Quickly restoring blood flow (i.e., reperfusion) following ischemia is 

critical in salvaging heart tissue. Surgical interventions, such as coronary 

angioplasty or emergency coronary artery bypass grafting, as well as 

thrombolytic drug treatments can enable restoration of coronary blood flow to 

reduce the amount of irreversible tissue damage that occurs in the myocardium 

during periods of prolonged ischemia(5, 8). However, as coronary blood flow is 

reestablished, ischemic damage is exacerbated by a burst of reactive oxygen 

species (ROS) generated within seconds of reperfusion(8, 9). Increased 

oxidative stress during reperfusion contributes to the death of cardiomyocytes 

that were viable before reperfusion occurred(10, 11). It has been suggested that 

up to 50% of myocardial infarct size is due to reperfusion injury occurring after 

ischemia, and the prognosis for patients surviving an acute myocardial infarction 

is dependent on infarct size(5, 10). Clinical treatment of I/R injury remains a 
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challenge as no approved pharmaceutical agents effectively limit I/R-induced 

damage(4, 12).  

The Need for Preclinical Investigation of Myocardial I/R 

Jennings et al. first described the concept of myocardial I/R injury in 1960 

using a canine I/R model, which resulted in cell swelling, myofibril contracture, 

sarcolemma disruption, and calcium phosphate accumulation within 

mitochondria(13). Treatment of myocardial I/R injury remains to be a challenge 

because reperfusion itself is associated with ventricular arrhythmias, stunning 

(i.e., contractile dysfunction of viable cells), and coronary vascular dysfunction(8, 

10). Identifying the specific mechanisms by which myocardial I/R injury occurs 

will allow for the development of efficient treatment strategies to reduce I/R injury 

in myocardial infarction or heart transplantation patients and further prevent 

ischemic heart failure. Effective cardioprotective treatment should reduce both 

the amount of tissue infarction and viable cell dysfunction.  

Implications of Mitochondria in Myocardial I/R 

Ischemia has a direct effect on adenosine triphosphate (ATP) production. 

As previously mentioned, ischemia prevents cardiomyocytes from receiving O2, 

glucose, and fatty acids and also reduces the amount of adenine nucleotides and 

cytochrome c available in mitochondria. Since mitochondria consume 85 to 90% 

of the O2 in a cell to synthesize ATP from adenosine diphosphate (ADP) and 

inorganic phosphate (Pi) during oxidative phosphorylation, the function of 
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mitochondria is quickly disrupted by ischemia. Under normal conditions, 

mitochondria produce over 90% of cellular energy in the form of ATP. Ischemic 

conditions disrupt ATP production, leading to an overproduction of ROS at 

reperfusion with the reestablishment of O2 supplied by coronary blood vessels. 

Mitochondria are implicated in I/R as a major source of ROS(14-20). Excess 

ROS leads to mitochondrial and cardiac contractile dysfunction, which can result 

in cell damage and additional tissue death, contributing to I/R injury.  

Mitochondria, Both a Source and a Target for ROS 

Mitochondria are extremely susceptible to oxidative damage since a large 

amount of ROS is generated within the mitochondria during I/R(14-18, 20). An 

excess of ROS leads to mitochondrial dysfunction, which is an important factor in 

the development of cardiac hypertrophy, contractile dysfunction, and subsequent 

heart failure(1, 6, 21). This sequence of events could lead to a decreased ability 

to recover from myocardial I/R and reduce the quality of life in patients following 

myocardial I/R. In dysfunctional myocardium, there is a significant increase in 

ROS production(1, 21, 22). Increased ROS production in dysfunctional 

mitochondria induces further ROS production resulting in a feed forward-loop of 

ROS elevation(14, 18). Dysfunctional mitochondria are associated with increased 

ROS production and oxidative mitochondrial DNA damage due to their inability to 

produce energy through the electron transport chain (ETC) complexes(6, 12, 21).  

Since mitochondrial DNA is situated closer to the primary site of ROS generation 
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and lacks both protective histones and efficient DNA repair mechanisms, it can 

easily become mutated and potentially lead to cardiomyopathy(14, 18, 23, 24).  

Sequence of ROS-Mediated I/R Damage: 
The Mitochondrial Respiratory Chain Releases ROS 

Oxidative phosphorylation is inactivated by ischemia, which results in an 

accumulation of phosphate, fatty acids, lactic acid, and cellular calcium while 

decreasing cellular pH and the amount of adenine nucleotides and cytochrome c 

available in the mitochondria(10, 12, 25, 26). The rapid restoration of the 

decreased pH upon reperfusion, possibly involving the opening of the 

mitochondrial permeability transition pore complex (MPTP), is a contributing 

factor to I/R injury. Reoxygenation with an acidic buffer inhibits opening of the 

MPTP(10, 27). At the time of reperfusion, a burst of ROS including superoxide 

(SO), hydrogen peroxide (H2O2), and peroxynitrite are generated by the 

interaction of O2 with the damaged mitochondrial respiratory chain, primarily 

through the uncoupling of complexes I and III(12, 28, 29). It is suggested that a 

large portion of ROS in the I/R heart is a result of the uncoupling of complexes I 

and III in the mitochondrial ETC(28). Under physiological conditions O2 is the 

final electron acceptor, accepting four electrons from complex IV, and is used to 

produce water (H2O), a by-product of respiration(14, 18)(Figure 1). 
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Figure 1. Electron transport 
chain (ETC) function in 
physiological conditions. 
Maintanence of the 
electrochemical gradient of 
the mitochondrial 
membranes by the ETC is 
essential for ATP production. 
In these conditions, oxygen 
(O2) accepts four electrons 
from complex IV. Adapted 
from Szeto 2006.  

 
However, in dysfunctional mitochondria, electrons leaking from complexes I and 

III are accepted by O2 to generate SO, a form of ROS(14, 18, 30)(Figure 2). 

Figure 2. Electron transport 
chain (ETC) function at 
reperfusion. Oxygen (O2) 
generates superoxide (O2

-) by 
accepting electrons leaking from 
complexes I and III. Even though 
O2

- cannot diffuse across 
membranes, O2

- is generated in 
both the intermembrane space 
and within the matrix by this 
mechanism. Forms of superoxide 
dismutase can quickly convert 
O2

- to hydrogen peroxide (H2O2), 
which is more stable and able to 
diffuse into the cytosol. Adapted 
from Szeto 2006 and modified.  

 
Excessive amounts of ROS produced during myocardial I/R overwhelm the 

physiological antioxidant mechanisms of glutathione, glutathione peroxidase, 

thioredoxin, glutaredoxina-tocopherol, ubiquinol, ascorbic acid, superoxide 

dismutase, and catalase(14, 18, 21, 26). The release of excess ROS damages 

cells directly. As a signaling molecule, ROS can activate hypertrophy and 

apoptosis pathways(21, 31-33). ROS directly damages nucleic acids, proteins, 
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and lipids, consequently disrupting membrane integrity and cell function as a 

result(14, 18, 21, 26, 30). SO can quickly be converted into H2O2, which is more 

stable, has a longer half-life, and can diffuse across the mitochondrial 

membranes into the cytosol(14, 32, 34). Conversion of H2O2 into hydroxyl 

radicals or carbonate anions, which are both highly reactive forms of ROS, can 

further promote oxidative stress(14). Adult rat cardiomyocytes treated with H2O2 

showed that H2O2 concentration-dependently activates four kinase signaling 

pathways (i.e., ERK1/2, p38 kinase, JNK, and Akt) involved in the regulation of 

cardiomyocyte hypertrophy and/or apoptosis. Lower H2O2 concentrations 

resulted in hypertrophy, while higher H2O2 concentrations induced apoptosis(31, 

35, 36). Varying levels of oxidative stress induced in neonatal rat ventricular 

myocytes also showed the same concentration-dependent effect of ROS on 

cardiac hypertrophy and apoptosis(32, 37-40). Nitric oxide (NO) can interact with 

SO to form peroxynitrite, a highly reactive form of ROS(30, 41). Peroxynitrite can 

rapidly modify proteins, DNA, and membranes to cause oxidative damage(10, 

21, 30, 42) and irreversibly inhibit cellular respiration(43). 

Sequence of ROS-Mediated I/R Damage:  
NADPH Oxidase, Another Important ROS Source 

Another source of ROS that originates in the mitochondria of 

cardiomyocytes and endothelial cells is nicotinamide adenine dinucleotide 

phosphate oxidase (Nox)(10, 22, 44-48). Nox4, for example, is primarily localized 

in mitochondria and exhibits increased ROS producing activity in dysfunctional 

cardiomyocytes(22, 44-48). Genetic deletion of p47phox, the cytosolic component 
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of Nox, has confirmed the implication of Nox in ROS-induced cardiac dysfunction 

in a mouse myocardial infarction model. Analysis 30 days following myocardial 

infarction showed that there was a reduction in left ventricular remodeling, 

dysfunction, and dilation which paralleled the decrease in cardiomyocyte 

apoptosis, hypertrophy, and intersititial fibrosis at the same time point. These 

results also suggest that Nox may be involved in the development of heart failure 

following myocardial infarction(6, 28, 48). However, it has been suggested that 

Nox4, which is primarily localized in mitochondria, does not require p47phox, 

p67phox, or Rac for activation but is dependent on SO levels for its expression. 

At both cardiac cellular and tissue levels, the overexpression of Nox4 has been 

shown to increase SO generation in mitochondria and contribute to cardiac 

dysfunction, fibrosis, apoptosis, and mitochondrial dysfunction(49). 

Sequence of ROS-Mediated I/R Damage:  
ROS-induced eNOS Uncoupling 

The production of ROS during reperfusion from mitochondria and Nox can 

stimulate further increases in ROS formation as a feed-forward loop. ROS from 

these sources may oxidize tetrahydrobiopterin (BH4) to dihydrobiopterin (BH2) 

and consequently promote eNOS uncoupling, which leads to additional ROS 

production(29, 50). When using BH2 as a co-factor, endothelial nitric oxide 

synthase (eNOS) is considered uncoupled and produces SO instead of NO. The 

release of SO from uncoupled eNOS causes oxidative damage and increases 

production of other forms of ROS(51). A schematic diagram of the implications of 

uncoupled eNOS in continuing the feed-forward loop of excessive ROS 
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production in I/R is shown in Figure 3. This diagram focuses on protein kinase C 

(PKC)-mediated ROS generation in I/R as an example, though other pathways 

contributing to the feed-forward loop of ROS overproduction in I/R exist.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic diagram of protein kinase C (PKC)-mediated ROS overproduction 
in ischemia/reperfusion (I/R). The insult caused by I/R stimulates the release of 
cytokines, which activate cytokine receptors. These cytokine receptors in turn generate 
diacylglycerol (DAG), a second messenger signaling lipid which activates PKC. PKC 
phosphorylates p47phox, an essential component in NADPH oxidase (Nox) activity, to 
activate Nox, resulting in SO (O2

-) release. Phosphorylation by PKC can also directly 
promote O2

- release from mitochondria and uncoupled eNOS. All of these sources of 
excess O2

- contribute to the oxidation of BH4 to BH2, which promotes further eNOS 
uncoupling, resulting in a feed-forward loop of ROS overproduction during I/R. Adapted 
and modified from Schmidt and Alp 2007. 
 

It has previously been shown that eNOS uncoupling is a major source of 

ROS in a hind limb I/R model and contributes to post-reperfused cardiac 

contractile dysfunction in myocardial I/R(52). The uncoupling of eNOS can 

quickly cause endothelial dysfunction within the first 5-10 min of reperfusion(52, 

53). Hemodynamic stress is also known to lead to eNOS uncoupling. However, 

supplementation with BH4 in mice with heart disease following pressure overload 
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prevents eNOS uncoupling and reduces left ventricular hypertrophy, cardiac 

dysfunction, and fibrosis (54). Folic acid also restores reduced BH4 production, 

which increases coupled eNOS activity to protect the heart. Folic acid preserves 

cardiac function in I/R rats, suggesting that there is a cardioprotective effect in 

decreasing ROS production by increasing available BH4 to increase coupled 

eNOS activity in I/R(55). Coupled eNOS produces NO. 

Once NO is released it acts as a diffusable signaling molecule and 

regulates blood pressure by increasing the production of cyclic guanosine 

monophospate (cGMP) to relax smooth muscle(1). Previous studies have shown 

that the pathway between eNOS, NO, and cGMP is an essential activator of 

mitochondrial biogenesis(56, 57). Mitochondrial biogenesis increases energy 

production and has a cardioprotective function in studies using rats, dogs, and 

humans(58-62). NO is able to improve coronary blood flow, inhibit accumulation 

of neutrophils, and inactivate SO radicals(10, 43, 63). The importance of these 

effects of NO were demonstrated by systemically inhibiting NO synthesis in vivo, 

resulting in peripheral vasoconstriction and hypertension, which induce 

cardiovascular reflexes that change preload, afterload, and heart rate(43, 64, 65). 

Additionally, it has been shown that NO regulates cellular respiration in the 

myocardium by increasing the efficiency of O2 consumption in oxidative 

phosphorylation.  Inhibiting NO sythesis at all levels of cardiac contractile 

performance significantly increased O2 consumption with no effect on the rate of 

ATP synthesis or amount of ATP produced, suggesting that the effect of 

inhibition of NO synthesis is unrelated to contractile performance. It has therefore 
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been suggested that endogenous NO enhances the coupling of O2 consumption 

to both ATP synthesis and cardiac performance(43). Despite its cardioprotective 

effects, NO is also known to reversibly bind to cytochrome c to inhibit energy 

production in the mitochondria and produce ROS and reactive nitrogen species 

by displacing O2(66). NO can react with SO to generate peroxynitrite, a highly 

reactive form of ROS(30, 42). NO is also able to induce apoptosis by activating 

the opening of the MPTP(41). It has been demonstrated that at pathological 

concentrations, NO activity switches from an anti-apoptotic effect to a pro-

apoptotic effect(67, 68) Endothelial dysfunction is a key event to induce 

leukocyte mediated inflammation leading to contractile dysfunction in the 

myocardium(52, 53). This sequence of events contributes to I/R injury. However, 

initiating sources of ROS that induce eNOS uncoupling are not well defined. 

Investigating the initiating sources of ROS and ways to inhibit excess ROS 

production in I/R is therefore of great significance. 

Sequence of ROS-Mediated I/R Damage:  
Lipid Peroxidation and Mitochondrial Permeability 

As mentioned before, excess release of ROS leads to an increased 

production of ROS. Lipid peroxidation can occur as a result of ROS release 

during I/R and cause membrane damage, such as loss of membrane potential. 

Lipid peroxidation can damage the sarcolemmal membrane and cause an 

increase of intracellular calcium that overwhelms the physiological calcium 

regulation mechanisms(10-12, 26). Excessive increases in intracellular calcium 

leads to cardiac hypertrophy, fibrosis, opening of the MPTP, contractile 
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dysfunction, cell death, and potentially heart failure(10, 11, 69). The opening of 

the MPTP induces cell death by the irreversible loss of the mitochondrial 

electrochemical membrane, causing mitochondrial swelling and rupture. 

Cytochrome c release from the MPTP into the cytosol inhibits electron transport 

and activates caspase mediated apoptosis cascades(12, 69, 70). Linoleic and 

arachidonic acid, for example, are unsaturated fatty acids that create 4-

hydroxynonenal (HNE) as a by-product of their peroxidation. HNE can create 

protein adducts and cause additional lipid peroxidation. HNE also induces 

formation of mitochondrial membrane permeabilization (MMP) and subsequent 

apoptosis. NO, peroxynitrite, and HNE can each independently cause lipid 

peroxidation and MMP. It is suggested that this effect is mediated by MPTP since 

the opening of the pore by this mechanism is inhibited by cyclosporin A, a direct 

inhibiter of the MPTP(71). Cyclosporin A binds to cyclophilin D and detaches 

cyclophilin D from the inner mitochondrial membrane(72) (Figure 4). The MPTP 

is a channel made up of proteins that form a complex to span the inner and outer 

mitochondrial membranes. The adenine nucleotide translocator, cyclophilin D, 

and the voltage-dependent anion channel are the key functional MPTP 

constituents(18, 72)(Figure 4).  
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Figure 4. The mitochondrial 
transition pore (MPTP) spans the 
outer and inner mitochondrial 
membranes. The peripheral 
benzodiazepine receptor (IBP), 
hexokinase (HK), adenine 
nucleotide translocase (ANT), 
creatine kinase (CK, in muscle 
mitochondria) and cyclophilin D 
(CpD) are the basic subunits of 
the MPTP. When cyclosporin A 
(CsA) binds (⊕) to CpD, CpD is 
unable to associate with the 
MPTP, preventing the MPTP 
from opening. Adapted and 
modified from Szewczyk and 
Wojtzak 2002. 

 
Although the mechanism by which NO, peroxynitrite, and HNE initiate MMP has 

not been clearly defined, the adenine nucleotide translocator component of the 

MPTP responds to these forms of ROS by opening the MPTP to increase MMP. 

MMP can affect both the outer and inner mitochondrial membranes 

simultaneously, or each individually. The opening of the MPTP uncouples 

oxidative phosphorylation, reducing the amount of ATP available, and allows the 

release of compounds normally sequestered by either or both of the 

mitochondrial membranes(10, 42, 69). Both of these effects can result in cell 

death. For example, prolonged MPTP opening can cause a loss of 

electrochemical membrane potential and release cytochrome c, Smac/DIABLO, 

and apoptosis-inducing factor (AIF) from the intermembrane space to activate 

apoptosis pathways, including those mediated by caspase activity(26, 41)(Figure 

5).  
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Figure 5. The mitochondrial 
transition pore (MPTP) in 
apoptosis pathways. ROS, 
DNA damage, and other 
apoptosis-inducing signals 
promote the binding of Bax, a 
proapoptotic protein, with the 
outer mitochondrial membrane 
near the MPTP. Bax activity 
promotes the opening of the 
MPTP, which releases 
cytochrome c and apoptosis-
inducing factor (AIF) into the 
cytosol. Elevated calcium and 
ROS can also directly stimulate 
MPTP opening. The release of 
cytochrome c and AIF into the 
cytosol activates caspase-
mediated apoptosis pathways. 
Adapted from Szewczyk and 
Wojtzak 2002 and modified. 

 
 
Mitochondria as a Potential Therapeutic Target in I/R 

Although mitochondrial-targeted antioxidant pretreatment can effectively 

limit I/R injury, pretreatment is not always possible in cases of myocardial 

infarction(5, 15, 16, 73, 74). Therefore, evaluating the cardioprotective efficacy of 

mitochondrial-targeted antioxidants when given at reperfusion is of high 

significance. Previous studies have shown that selective mitochondrial 

antioxidants administered before ischemia and at reperfusion can reduce heart, 

liver, and kidney damage beginning immediately following ischemia, thus 

suggesting that selective mitochondrial antioxidants can work quickly in 

attenuating I/R injury(18, 30, 75). If these agents can work expeditiously and 

effectively when administered at the time of coronary blood flow restoration, 

mitochondrial-targeted antioxidants may be a practical option in the clinical 
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setting in cases of myocardial infarction. Following myocardial I/R, treatments 

that can attenuate endothelial and cardiac contractile dysfunction will limit tissue 

damage and allow these patients to have a better quality of life.   

Mitoquinone, a Mitochondrial-Targeted Antioxidant 

Conventional antioxidants, such as coenzyme Q, vitamin E, and N-

acetylcysteine, have limited efficacy in protecting mitochondria from oxidative 

damage because they are not targeted selectively to the mitochondria, where 

most I/R damage occurs(14-18, 26). Therefore, selectively targeting mitochondria 

with antioxidants may be an effective strategy to attenuate release of 

mitochondrial ROS (Figure 6). 

Figure 6. Reduction of mitochondrial 
reactive oxygen species (ROS) limits 
excess cell death. Mitochondrial 
ROS stimulate ROS production 
outside mitochondria, increasing 
oxidative stress and apoptosis 
signaling cascade activation. ETC 
complexes and Nox4 are major ROS 
sources in dysfunctional 
mitochondria. Specific mitochondrial-
targeted antioxidants exert 
cardioprotective effects. Adapted 
from Bayeva  et al. 2013 and 
modified. 

 

Attachment of an antioxidant to a lipophilic cation allows the antioxidant to 

concentrate 100 to 1000-fold within mitochondria(14, 17, 76). Mitoquinone 

(MitoQ, MW=579g/mol; the MitoQ referred to in this study was complexed with 

cyclodextrin (MW=1135g/mol) to improve water solubility, total MW=1714g/mol), 

a coenzyme Q analog, incorporates a lipophilic triphenylphosphonium (TPP) 
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cation, which easily passes through phospholipid bilayers and is driven by the 

large electrochemical mitochondrial membrane potential (150-180 mV), to 

concentrate MitoQ specifically within the mitochondria at a several hundred-fold 

concentration(16-18, 76). The TPP cation is covalently attached to an ubiquinol 

antioxidant to scavenge ROS and prevent lipid peroxidation(1, 16, 17, 76, 77). 

After entering the mitochondria, the respiratory chain reduces MitoQ to its active 

ubiquinol form. A previous study has shown that accumulation of ubiquinol within 

mitochondria is necessary for the efficacy of MitoQ in limiting myocardial I/R 

injury since quinol by itself is unable to cross the mitochondrial membrane(16). 

The oxidation of MitoQ into its quinone form scavenges ROS inside 

mitochondria; complex II of the respiratory chain then recycles MitoQ back into its 

active quinol form continuously after each time MitoQ completes antioxidant 

activity(16, 17, 78). Another aspect of MitoQ that could make it an attractive 

therapeutic tool is that no significant adverse effects have been reported after 

long-term administration. MitoQ does not act as a pro-oxidant in wild-type mice in 

vivo(17). No significant adverse effects were reported when MitoQ was 

administered as an oral tablet to patients for up to a year, however there was 

mild nausea and vomiting reported in the MitoQ treatment groups(76, 79). In one 

study, administration of MitoQ (500 µM in drinking water) to mice for 20-28 weeks 

allowed MitoQ to accumulate primarily in the liver and heart but also slightly in 

the brain. Long term MitoQ administration did not increase mitochondrial 

oxidative stress in vivo, suggesting that MitoQ does not have pro-oxidant effects 

when administered over an extended period of time. Additionally, mitochondrial 
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enzyme activity was not negatively affected. MitoQ seemed to reduce plasma 

levels of triglyceride but did not alter glucose, insulin, free fatty acid, or 

cholesterol levels in plasma. Additionally, these MitoQ treated mouse heart and 

liver tissues did not have any significant differences in their gene expression 

profile compared to untreated controls(17). In human studies where MitoQ was 

administered orally as a daily dose for up to one year, no severe side effects 

were reported(76, 79). Another aspect of TPP conjugated antioxidants is that 

uptake is reversible; they can be rapidly cleared from any organ of the body once 

administration is stopped(80). 

SS-31, Also a Mitochondrial-Targeted Antioxidant 

The SS-31 (Szeto-Schiller) peptide ((D-Arg)-Dmt-Lys-Phe-Amide, 

MW=639 g/mol, Genemed Synthesis, Inc., San Antonio, TX) is also of interest in 

further understanding the role of mitochondrial derived ROS and efficacy of 

inhibiting mitochondrial ROS production in myocardial I/R. SS-31 is a cell-

permeable peptide, specifically targeted to inner mitochondrial membranes 

based on its alternating aromatic residues and basic amino acid sequence, with 

an antioxidant dimethyltyrosine moiety (Dmt)(14, 26). Tyrosine scavenges ROS 

to form unreactive compounds, attributing the ability of SS-31 to scavenge ROS 

to the Dmt amino acid residue, which has been found to be more effective than 

tyrosine(18, 81, 82). The backbones of most peptides have a tendency to form 

hydrogen bonds with water, making these peptides not cell-permeable. However, 

the alternating aromatic-cationic motif of SS-31 allows it to rapidly diffuse through 
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cell membranes(18). Unlike TPP-conjugated antioxidants, SS-31 does not rely on 

the electrochemical mitochondrial membrane potential to selectively accumulate 

10,000-fold inside mitochondria(14, 18). In dysfunctional mitochondria, the 

electrochemical membrane potential may be disrupted(18, 73). Therefore, the 

ability to target an antioxidant selectively to mitochondria independent of 

membrane potential may prove useful in I/R. Additionally, high doses of lipophilic 

cation attached antioxidants may depolarize the mitochondrial membrane 

potential, but SS-31 at concentrations as high as 1 mM did not depolarize the 

mitochondrial membrane potential(14, 18, 26). SS-31 can cross plasma 

membranes in both directions in an energy-independent manner(14, 26, 83). In 

liver and brain mitochondria, SS-31 reached its maximum intracellular 

concentration within 2 min of incubation(26). SS-31 achieved steady state by 30 

minutes of incubation with neuronal cell lines(26). SS peptides have relatively 

long elimination half-lives and are also small, water soluble, stable and resistant 

to peptidase degradation(14, 26). When SS-31 was incubated in mouse, rat, dog, 

monkey and human plasma at 37 oC for 1 hour there was little degradation. SS-

31 was most stable in human plasma, with a half-life of about 30 hours, and was 

classified as a low clearance compound in human liver microsomes(12, 84). 

Previous studies have shown that in ex vivo and in vivo I/R models, SS peptides 

scavenge H2O2, hydroxyl radicals, and peroxynitrite while also inhibiting lipid 

peroxidation. Consequently, there is less cytochrome c release and subsequent 

oxidant-induced cell death because the opening of the MPTP is inhibited(12, 14, 

18, 26, 73, 85). Since SS-31 reduced infarct size and tissue dysfunction in I/R 
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models as a pretreatment, it is possible that SS-31 would have a similar effect 

when administered at reperfusion(86). One limitation of previous studies is that 

they did not measure both cardiac function and infarct size in the same animals 

that were administered SS-31 exclusively at the time of reperfusion.  
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HYPOTHESIS 

It has previously been determined that the formation of ROS within the 

mitochondria under I/R conditions is a major contributor to I/R injury(14-16). It is 

hypothesized that antioxidants specifically targeted to the mitochondria to 

attenuate ROS formation will reduce I/R injury by limiting cardiac contractile 

dysfunction and cardiac tissue damage. MitoQ, a coenzyme Q derivative, and 

SS-31, an alternating cationic-aromatic peptide, are selective mitochondrial ROS 

inhibitors. MitoQ incorporates a lipophilic TPP cation covalently attached to a 

ubiquinol antioxidant, whereas SS-31 is a cell-permeable peptide with an 

antioxidant dimethyltyrosine residue specifically targeted to the inner 

mitochondrial membrane based on its alternating cationic aromatic residue 

sequence(15, 16, 87). It is expected that the myocardial I/R rat hearts treated 

with MitoQ or SS-31, given at reperfusion, will have greater preserved cardiac 

contractile function and smaller infarct size following myocardial I/R in 

comparison to the untreated I/R rat hearts. 
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METHODS 

Isolated Rat Heart Preparation 

 Male Sprague-Dawley rats (275-325 g, Charles River, Springfield, MA) 

were anesthetized intraperitoneally (i.p.) with pentobarbital sodium (60 mg/kg); 

the injection also contained sodium heparin (1,000 U). Each heart was rapidly 

excised and subjected to retrograde perfusion via the aorta with a modified 

Krebs-Henseleit buffer (in mmol/L: 17.0 dextrose, 120.0 NaCl, 25.0 NaHCO3, 2.5 

CaCl2, 0.5 EDTA, 5.9 KCl and 1.2 MgCl2). The perfusate was maintained at 

37 oC, kept at 80 mmHg constant pressure, aerated with 95% O2-5% CO2 and 

equilibrated at a pH of 7.35-7.45(88, 89).  

 The aorta of the isolated rat heart was cannulated onto a perfusion needle 

and immersed in a water-jacketed reservoir containing 160 mL of modified 

Krebs-Henseleit  buffer (Figure 7).  

Figure 7. The isolated perfused rat heart was 
cannulated via the aorta with a perfusion needle while 
immersed in a water-jacketed reservoir containing 
160 mL of modified Krebs-Henseleit  buffer. Also 
shown in this picture is the pressure transducer 
inserted into the left ventricular cavity to monitor 
cardiac function parameters.  
 
 
A flowmeter (T106, Transonic Systems, Inc., 

Ithaca, NY) was inserted into the perfusion line to 

monitor coronary flow.  Left ventricular end-

systolic pressure (LVESP), left ventricular end-

diastolic pressure (LVEDP), heart rate, and the peak rates of rise and fall in the 
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first derivative of left ventricular pressure (dP/dtmax and dP/dtmin, respectively) 

were monitored using a pressure transducer (SPR-524, Millar Instruments, Inc., 

Houston, TX) positioned in the left ventricular cavity and recorded using a 

Powerlab Station acquisition system (ADInstruments, Grand Junction, CO).  Left 

ventricular developed pressure (LVDP) was calculated by subtracting the LVEDP 

from the LVESP. Insertion of the pressure transducer catheter into the left 

ventricle allowed Krebs’ buffer to fill the left ventricle and establish preload 

volume. During the baseline period, the preload of the hearts of all study groups 

were be similar due to the limited weight range (275-325 g) of the animals as 

seen in previous studies(89-91). The initial baseline LVEDP was between 4-9 

mmHg for all hearts in each study group.  Coronary flow, LVESP, LVEDP, heart 

rate, dP/dtmax, and dP/dtmin were measured every 5 min for 15 min to ensure that 

stable baseline measurements were obtained. Figure 8 illustrates a schematic 

diagram of the I/R protocol in the isolated perfused rat heart.   

 
Figure 8. Myocardial I/R protocol. A 30 min perfusion period replaced ischemia in sham 
groups. At the beginning of the 45 min reperfusion period, 5 mL of autologous plasma ± 
MitoQ or SS-31 was infused 1 mL/min for 5 min. 
 
 Once a stable baseline was established, ischemia was induced for 30 min 

by quickly reducing the flow of Krebs’ buffer to zero. One of the three side arms 

in the perfusion line proximal to the heart inflow cannula was used for the 

infusion of 5 mL of autologous plasma (control hearts) or autologous plasma 

baseline 
stabilization 
15 min 

ischemia 
 
30 min 

reperfusion 
 
45 min 

TTC 
staining 

↑ ↑  ↑   
heart 
connected to 
I/R apparatus 

flow of modified 
Krebs-Henseleit 
buffer reduced to 0 

autologous plasma ± MitoQ or SS-31 
infusion 
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containing MitoQ (1, 10, 20 μM) or SS-31 (25, 50, 100 μM). After 30 min of 

ischemia, the flow of Krebs’ buffer was restored simultaneously with an infusion 

of either 5 mL of plasma (control I/R) or 5 mL of plasma containing MitoQ or SS-

31 at a rate of 1 mL/min for 5 min. Sham hearts were not subjected to ischemia 

and were given the 5 mL infusion of plasma at a rate of 1 mL/min for 5 min 

following 30 minutes of continuous perfusion in lieu of ischemia. Beginning at the 

infusion of plasma, cardiac function parameters were recorded every 5 min for 45 

min. 

 At the end of the experimental protocol, the right and left ventricles were 

separated from each heart. Three sections of the left ventricle were used for 

2,3,5- triphenyltetrazolium chloride (TTC) staining.  

Groups of Isolated Perfused Hearts 

The 9 groups of isolated perfused rat hearts used in the study are shown 

in Table 1.  Two types of control groups were used in the study based on 

previously established myocardial I/R models. Sham hearts were continuously 

perfused with the modified Krebs-Henseleit buffer for a 30 min period in lieu of 

the 30 min ischemia period and infused with 5 mL of plasma (1 mL/min) 

immediately following the 30 min perfusion period (i.e., the same time point that 

all I/R hearts would be given 5 mL of plasma). This group was utilized to show 

that cardiac function (i.e., LVDP, dP/dtmax, dP/dtmin, coronary flow,,  and heart 

rate) is maintained with no significant changes over a 90 min isolated perfused 

heart protocol, suggesting that any damage or cadiac dysfunction is due to injury 
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associated with ischemia and reperfusion. Control I/R hearts were subjected to a 

30 min period of ischemia followed by 45 min of reperfusion including an infusion 

of 5 mL of plasma (1 mL/min) in the first 5 min of reperfusion immediately 

following ischemia. This group was used to show the compromised 

postreperfused heart function after 30 min ischemia and 45 min reperfusion in 

the absence of any drugs compared to the baseline measurements of cardiac 

function. The drug treated I/R groups consist of I/R + MitoQ and I/R + SS-31 as 

shown in Table 1. 

 

Isolation of Plasma

Blood was collected in 1 mL of citrate phosphate dextrose buffer (Sigma 

Chemical Co., St. Louis, MO) from the abdominal aorta of the same rat from 

which the heart was isolated for each myocardial I/R experiment to simulate in 

vivo conditions. The blood was centrifuged at 10,000 x g for 10 min at 4 °C. The 

plasma was decanted from the blood, and 5 mL of the plasma collected from 

each rat was used for its corresponding isolated perfused heart during the 

infusion period at the beginning of reperfusion in all myocardial I/R groups.   

TTC Staining 

Once the 45 min reperfusion period was complete, the right ventricle was 

separated from the left ventricle and placed in liquid nitrogen. The apex and two 

Table 1. Isolated Perfused Rat Heart Treatment Groups 
 Control I/R MitoQ  SS-31  
  1 μM 10 μM 20 μM 25 μM 50 μM 100 μM 

Sham n=6       
I/R n=14 n=6 n=7 n=6 n=6 n=6 n=6 
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middle sections were isolated from the base of the left ventricle, and the base of 

the left ventricle was placed in liquid nitrogen. The apex and two middle sections 

were each placed in 1 mL of TTC for 15 min to visualize infarcted tissue areas. 

TTC is a salt that can be reduced by dehydrogenases to triphenylformazan, a fat 

soluble, light-sensitive compound which stains viable tissue bright red. Areas 

deficient in dehydrogenase activity remain the pale white color of the TTC salt. 

Previous studies have shown that the differentiation between viable and infarcted 

tissue by TTC staining correlates with loss of dehydrogenase activity and is 

therefore a reliable tool to measure infarct size(92-94). The weight ratio of 

infarcted cardiac tissue to the total area of tissue at risk was calculated and 

statistically analyzed.  

Statistical Analysis 

All data in the text and figures were presented as means ± SEM.  The 

cardiac function and TTC staining data were analyzed by ANOVA using post hoc 

analysis with the Student-Newman-Keuls test.  Probability values of <0.05 were 

considered to be statistically significant. 
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RESULTS 

I/R + MitoQ (1 μM, 10 μM, 20 μM) 

Cardiac Function 

 Sham hearts, which were not subjected to ischemia, are shown in all 

cardiac function graphs as reference points to illustrate the impact of I/R on 

cardiac function. Table 2 expresses the percent recovery, a comparison of the 

final to initial values, and Figures 9, 10, and 11 show the initial and final values of 

LVDP, dP/dtmax, and dP/dtmin from each experimental group, respectively.  

 

There was no statistically significant difference initially between the 

baseline values between any of the experimental groups. Additionally, there was 

no statistically significant difference between the initial and final values of LVDP, 

dP/dtmax, or dP/dtmin in the sham hearts. The sham hearts showed that there is 

not a significant decrease in cardiac function due to the experimental protocol in 

lieu of ischemia. In contrast, cardiac function of the control I/R hearts was 

significantly compromised by 45 min postreperfusion compared to baseline 

Table 2. Infarct Size (%) and LVDP, dP/dtmax, and dP/dtmax Percent Recovery 
 Control I/R MitoQ  SS-31  
  1 μM 10 μM 20 μM 25 μM 50 μM 100 μM 

Infarct 
Size 

45.0±2.1 53.9±6.3 26.7±3.2** 23.3±2.1** 25.2±3.8** 18.9±2.0** 20.6±1.9** 

LVDP 47.6±3.0 58.9±9.2 76.7±4.0* 69.5±7.8* 47.3±5.9 80.6±3.4** 62.1±6.4 
dP/dtmax 37.7±3.0 40.9±7.4 62.0±3.3* 55.2±5.4* 42.6±3.1 70.5±5.8** 49.0±2.6 
dP/dtmin 48.7±1.3 59.4±8.8 72.1±8.2 63.5±10.4 43.1±5.2 81.4±4.1* 61.7±7.9 

All data were analyzed using ANOVA with the Student Newman Keuls test (*p<0.05, 
**p<0.01 compared to control I/R) 
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cardiac function (P<0.01). At the end of each experiment, control I/R hearts 

recovered to 47.6 ± 3.0 % of initial LVDP, 37.7 ± 3.0 % of initial dP/dtmax, and 

48.7 ± 1.3 % dP/dtmin (Table 2, Figs. 9-11). I/R hearts treated with MitoQ (10, 20 

μM) significantly recovered in LVDP and  dP/dtmax (P<0.05 compared to control 

I/R; Table 2, Figs. 9 and 10); whereas lower dose (1 µM) MitoQ was not 

statistically different from the I/R control (Table 2, Figs. 9 and 10). Interestingly, 

even though MitoQ (10, 20 μM) was able to improve postreperfused dP/dtmax, 

there was not a significant difference in the postreperfused dP/dtmin between the 

MitoQ (10, 20 μM) treated I/R hearts and untreated I/R hearts (Table 2, Fig. 11). 

Overall, these results suggest that the infusion of MitoQ (10, 20 μM) at 

reperfusion improves postreperfused cardiac contractile function compared to I/R 

control hearts (P<0.05).  

Figure 9. Initial (before 
ischemia) and final (at 45 
min reperfusion) 
measurements from 
isolated perfused rat 
hearts of left ventricular 
developed pressure 
(LVDP), expressed in 
mmHg. (*P<0.05 
compared to control). All 
values are expressed as 
mean ± SEM. The number 
of hearts in each 
experimental group is 
shown in the box at the 
base of each bar. 
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Figure 10. Initial (before 
ischemia) and final (at 45 
min reperfusion) 
measurements from 
isolated perfused rat 
hearts of the peak rate of 
rise in the first derivative of 
left ventricular systolic 
pressure (dP/dtmax), 
expressed in mmHg/s. 
(*P<0.05 compared to 
control). All values are 
expressed as mean ± 
SEM. The number of 
hearts in each 
experimental group is 
shown in the box at the 
base of each bar. 
 
 
 

Figure 11. Initial (before 
ischemia) and final (at 
45 min reperfusion) 
measurements from 
isolated perfused rat 
hearts of the minimal 
rate of left ventricular 
systolic pressure in the 
first derivative (dP/dtmin), 
expressed in mmHg/s. 
(*P<0.05 compared to 
control). All values are 
expressed as mean ± 
SEM. The number of 
hearts in each 
experimental group is 
shown in the box at the 
base of each bar. 

 
 
 Moreover, the time courses of LVDP, dP/dtmax, and dP/dtmin show that the 

I/R control group exhibited sustained contractile dysfunction throughout the 45 

min period of reperfusion following ischemia compared to the sham hearts that 

did not experience ischemia (P<0.01). However, the I/R hearts treated with 10 

μM MitoQ showed significantly recovered LVDP by the 20 min time point and 
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significantly recovered dP/dtmax by the 30 min time point, suggesting that cardiac 

contractile function can recover more quickly after an infusion of MitoQ (10 μM) 

and sustain better contractile function by 45 min of reperfusion compared to 

untreated I/R controls (Figs. 12 and 13, both P<0.05). Additionally, I/R hearts 

treated with 20 μM MitoQ showed significant improvement in LVDP and dP/dtmax 

by 40 min reperfusion compared to untreated I/R controls (Figs. 12 and 13, both 

P<0.05). However, MitoQ (10, 20 μM) was not able to significantly restore 

dP/dtmin compared to untreated I/R control hearts (Fig. 14). The I/R hearts treated 

with a 1 μM dose of MitoQ did not show any significant changes in LVDP, 

dP/dtmax, or dP/dtmin throughout the I/R timecourse (Figs. 12-14).  

 

Figure 12. Time course of measurements of left ventricular developed pressure (LVDP) 
expressed in mmHg from initial baseline period (before ischemia) to the final recording 
time point (at 45 min reperfusion) from isolated perfused rat hearts (*P<0.05, **P<0.01 
compared to control I/R; †P<0.05 compared to MitoQ 20 µM). All values are expressed 
as mean ± SEM.  
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Figure 13. Time course of measurements of the peak rate of rise in the first derivative of 
left ventricular systolic pressure (dP/dtmax) expressed in mmHg/s from initial baseline 
period (before ischemia) to the final recording time point (at 45 min reperfusion) from 
isolated perfused rat hearts. (*P<0.05, **P<0.01 compared to control I/R; 
#P<0.05;†P<0.05 compared to MitoQ 20 µM). All values are expressed as mean ± SEM.  
 

 
Figure 14. Time course of measurements of the minimal rate of left ventricular systolic 
pressure in the first derivative (dP/dtmin) expressed in mmHg/s from initial baseline period 
(before ischemia) to the final recording time point (at 45 min reperfusion) from isolated 
perfused rat hearts. All values are expressed as mean ± SEM.  
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I/R + SS-31 (25 μM, 50 μM, 100 μM) 

Cardiac Function 

 Figures 15, 16, and 17 show the initial and final values of LVDP, dP/dtmax, 

and dP/dtmin from each experimental group, respectively. There was no 

statistically significant difference initially between the baseline values between 

any of the experimental groups. I/R hearts treated with SS-31 50 μM significantly 

recovered in LVDP, dP/dtmax, and dP/dtmin compared to untreated control I/R 

(P<0.01 compared to untreated control I/R, Table 2, Figs. 15-17); whereas SS-31 

(25, 100 µM) treatment did not show statistical difference from the untreated I/R 

control (Table 2, Figs. 15-17).  

Figure 15. Initial (before 
ischemia) and final (at 45 min 
reperfusion) measurements 
from isolated perfused rat 
hearts of left ventricular 
developed pressure (LVDP), 
expressed in mmHg. 
(**P<0.01 compared to 
control I/R). All values are 
expressed as mean ± SEM. 
The number of hearts in each 
experimental group is shown 
in the box at the base of each 
bar. 
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Figure 16. Initial (before 
ischemia) and final (at 45 
min reperfusion) 
measurements from isolated 
perfused rat hearts of the 
peak rate of rise in the first 
derivative of left ventricular 
systolic pressure (dP/dtmax), 
expressed in mmHg/s. 
(**P<0.01 compared to 
control I/R). All values are 
expressed as mean ± SEM. 
The number of hearts in 
each experimental group is 
shown in the box at the base 
of each bar. 
 
 
 
 

Figure 17. Initial (before 
ischemia) and final (at 45 
min reperfusion) 
measurements from 
isolated perfused rat 
hearts of the minimal rate 
of left ventricular systolic 
pressure in the first 
derivative (dP/dtmin) 
expressed in mmHg/s. 
(**P<0.01 compared to 
control I/R). All values 
are expressed as mean ± 
SEM. The number of 
hearts in each 
experimental group is 
shown in the box at the 
base of each bar. 

 
 
 Moreover, the time courses of LVDP, dP/dtmax, and dP/dtmin show that the 

I/R control group exhibited sustained contractile dysfunction throughout the 45 

min period of reperfusion following ischemia compared to the sham hearts that 

did not experience ischemia (P<0.01). However, the I/R hearts treated with 50 

μM SS-31 showed significantly recovered LVDP, dP/dtmax, and dP/dtmin by the 15 
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min time point, suggesting that cardiac contractile function can recover more 

quickly after an infusion of SS-31 (50 μM) and sustain better contractile function 

by 45 min of reperfusion compared to untreated I/R controls (Figs. 18-20, all 

P<0.01).  

 

Figure 18. Time course of measurements of left ventricular developed pressure (LVDP) 
expressed in mmHg from initial baseline period (before ischemia) to the final recording 
time point (at 45 min reperfusion) from isolated perfused rat hearts. Infusion of SS-31 at 
reperfusion attenuated cardiac contractile dysfunction by allowing LVDP to recover 
closer to baseline values throughout the time course of the experiment (**P<0.01 
compared to control I/R; #P<0.05, ##P<0.01 compared to SS-31 25 µM;†P<0.05 
compared to SS-31 100 µM). All values are expressed as mean ± SEM.  
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Figure 19. Time course of measurements of the peak rate of rise in the first derivative of 
left ventricular systolic pressure (dP/dtmax) expressed in mmHg/s from initial baseline 
period (before ischemia) to the final recording time point (at 45 min reperfusion) from 
isolated perfused rat hearts. Infusion of SS-31 at reperfusion attenuated cardiac 
contractile dysfunction by allowing dP/dtmax to recover closer to baseline values 
throughout the time course of the experiment (**P<0.01 compared to control I/R; 
#P<0.05, ##P<0.01 compared to SS-31 25 µM;†P<0.05,††P<0.01  compared to SS-31 100 
µM). All values are expressed as mean ± SEM. 
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Figure 20. Time course of measurements of the minimal rate of left ventricular systolic 
pressure in the first derivative (dP/dtmin) expressed in mmHg/s from initial baseline period 
(before ischemia) to the final recording time point (at 45 min reperfusion) from isolated 
perfused rat hearts. Infusion of SS-31 at reperfusion attenuated cardiac contractile 
dysfunction by allowing dP/dtmin to recover closer to baseline values throughout the time 
course of the experiment (*P<0.05, **P<0.01 compared to control I/R; #P<0.05, ##P<0.01 
compared to SS-31 25 µM;†P<0.05  compared to SS-31 100 µM)All values are 
expressed as mean ± SEM. 
 
 

I/R + MitoQ (1 μM, 10 μM, 20 μM) and I/R + SS-31 (25 μM, 50 μM, 100 μM) 

Infarct Size 

Figure 21 illustrates cross sections of left ventricular tissue stained with 

1% TTC to detect infarct size. 

Figure 21. Representative cross sections of I/R left ventricles subjected to TTC staining. 
Viable tissue stained red while the areas of infarction stained white. 
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The weight ratio of cardiac tissue infarct to the total area at risk was calculated 

and statistically analyzed. The I/R hearts treated with MitoQ (10 μM and 20 μM) 

or SS-31 (25, 50, 100 μM) showed a significantly smaller infarct size compared to 

untreated I/R controls (P<0.01 compared to control I/R; Table 2, Fig. 22). These 

results suggest that the infusion of MitoQ or SS-31 at reperfusion significantly 

reduces the amount of cardiac tissue death following I/R. However, the I/R hearts 

treated with 1 μM MitoQ did not show a significant difference in infarct size 

compared to untreated I/R hearts, suggesting that there is no cardioprotective 

effect at this dose (Fig. 22). 

 

Figure 22. Ratio of infarct size to total cardiac tissue at risk as determined by TTC 
staining. Infusion of MitoQ (10, 20 μM) or SS-31 (25, 50, 100 μM) at reperfusion 
attenuated cardiac tissue death compared to untreated I/R hearts (*P<0.05, **P<0.01). 
All values are expressed as mean ± SEM.  
 



 

                                                                             

                                                                          
36 

 
DISCUSSION 

Summary of major findings 

The results of this study suggest the infusion of MitoQ (10, 20 μM) at 

reperfusion improves postreperfused cardiac contractile function compared to I/R 

control hearts. The effect of MitoQ on cardiac function correlates with the infarct 

size data, suggesting the effects of the infusion of MitoQ at reperfusion can range 

from 1 to 20 μM. By contrast, all SS-31 treated I/R hearts showed a reduction in 

infarct size compared to the untreated control I/R hearts, but only the 50 μM dose 

of SS-31 elicited improvement in cardiac function within the 45 minute 

reperfusion period. This result is consistent with a previous myocardial I/R study 

in which a SS-31 analog (i.e., Bendavia) showed a reduction in infarct size but no 

significant improvement in cardiac function(95). Kloner et al. suggest SS peptides 

can reduce infarct size in I/R but may not improve post-reperfused cardiac 

function because the myocardium may be reversibly stunned and require more 

time to improve. Similarly, in this myocardial I/R study, SS-31 significantly 

reduced infarct size compared to the untreated control I/R hearts, yet the 25 and 

100 μM doses of SS-31 could not restore cardiac function within the 45 minute 

reperfusion period as quickly as the 50 μM dose of SS-31. Since it has been 

suggested that most I/R-induced damage occurs within the first 5 minutes of 

reperfusion, it is important to discover agents that can work rapidly and 

effectively to reduce the amount of I/R injury(8, 9). 
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These results suggest that mitochondrial ROS may be a significant 

contributor to myocardial I/R injury and are consistent with the hypothesis that 

inhibiting the release and accumulation of excess mitochondrial ROS with MitoQ 

or SS-31 attenuates myocardial I/R injury and subsequent cardiac contractile 

dysfunction and tissue death. 

The effects of MitoQ on cardiac contractile function and infarct size in I/R 

 The administration of MitoQ (10, 20 μM) at reperfusion significantly 

restored postreperfused LVDP and dP/dtmax closer to baseline levels and 

reduced infarct size in comparison to untreated I/R hearts. Although the 10 and 

20 μM doses of MitoQ significantly restored LVDP and dP/dtmax (P<0.05), none of 

the doses of MitoQ significantly restored postreperfused dP/dtmin in comparison to 

I/R controls. This finding suggests that postreperfused MitoQ treated hearts 

reach maximum contractility quickly but relax at a rate comparable to that of 

postreperfused untreated I/R hearts. MitoQ (10, 20 μM) administered at 

reperfusion was able to allow LVDP to recover more closely to baseline values 

after 45 min reperfusion than untreated I/R hearts. Although there was no 

significant difference in LVEDP between the experimental groups at the final time 

point in these experiments, lower post-I/R LVEDP could possibly contribute to the 

improved LVDP recovery in MitoQ-treated hearts. Although the I/R hearts treated 

with 20 μM of MitoQ reached final contractile function measurements similar to 

those of the I/R hearts treated with 10 μM, the time course of the I/R hearts 

treated with 20 μM showed that these hearts did not significantly differ from 
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untreated control I/R hearts in the 5-35 min period of reperfusion. In contrast, the 

I/R hearts treated with 10 μM of MitoQ significantly improved in LVDP by the 15 

min time point and in dP/dtmax by the 30 min time point. This delay in effect of the 

20 μM dose of MitoQ could possibly be attributed to reversible dysfunction in 

viable cells since these hearts significantly recovered LVDP and dP/dtmax by 45 

min reperfusion and also had a significantly smaller infarct size compared to 

untreated control I/R hearts. There was no statistical significance between MitoQ 

(1, 10, 20 μM) and untreated I/R hearts in the heart rate, coronary flow, LVESP, 

or LVEDP final values. While it would be expected that a decrease in infarct size 

would correlate with an increase in coronary flow, such an effect was not evident 

in this study(89, 95-97). In summary, postreperfused MitoQ-treated I/R hearts 

display significantly restored cardiac contractile function and smaller infarct size 

than untreated I/R hearts. These results suggest that mitochondrial ROS may be 

a significant contributor to myocardial I/R injury, and inhibiting the release of 

mitochondrial ROS with selective mitochondria-targeted antioxidants attenuates 

myocardial I/R injury and subsequent cardiac contractile dysfunction. 

 These results are consistent with the findings of other studies in which 

MitoQ attenuated tissue damage and dysfunction in I/R models. The Adlam et al. 

2005 study reported that a pretreatment of MitoQ (500μM) in drinking water given 

to rats for two weeks prior to I(30min)/R(60min) improved postreperfused cardiac 

function in isolated rat hearts compared to I/R control hearts. Specifically, MitoQ-

treated rat hearts achieved a significantly improved recovery of postreperfused 

LVDP in comparision to treatment with untargeted antioxidant compounds(16). A 
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similar study using pretreatment with MitoQ (500 μM) in drinking water for 10 

days prior to I(20min)/R(90min) in isolated perfused rat hearts showed an 

improvement in LVDP by 20% compared to I/R control hearts(74). The response 

to myocardial I/R of the MitoQ pretreated isolated perfused hearts in these 

studies suggests that mitochondria-derived ROS is a source of oxidative stress 

implicated in myocardial I/R injury. 

 The cardioprotective effects attributed to MitoQ were also investigated in 

another study in which rats were treated with doxorubicin (DOX), a drug known to 

induce cardiomyopathy, and MitoQ. These rats were treated for 12 weeks with 

DOX, MitoQ, or DOX plus MitoQ. Two-dimensional echocardiography measured 

the left ventricular function, which decreased in DOX-treated rats but was 

preserved during MitoQ plus DOX treatment. In addition, cytochrome c oxidase 

function was restored in DOX plus MitoQ (2 mg/kg) rats but diminished in DOX-

treated rats(98). The dose of MitoQ administered in the DOX-treated rat study is 

similar to the dose range used by our research group to show a reduction in rat 

blood H2O2 levels when administered during reperfusion compared to untreated 

I/R controls(99). In a hypertensive rat model of cardiovascular disease, MitoQ 

reduced cardiac dysfunction, blood pressure, cardiac hypertrophy, and 

endothelial dysfunction(100). Bovine aortic endothelial cells pretreated with 

MitoQ (1 µM) and incubated with glucose/glucose oxidase, to induce caspase 

activation, inhibited H2O2-induced apoptosis and lipid and protein peroxidation 

while also preserving mitochondrial membrane potential(101). Although 

pretreatment with MitoQ in these studies exhibited significant cardioprotective 
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effects, administering MitoQ as a pretreatment may not be a practical option in 

clinical occurrences of myocardial infarction. Therefore, administering MitoQ at 

reperfusion may prove more useful. MitoQ has exhibited protective effects when 

given during reperfusion following one hour ischemia in liver I/R and resulted in 

reduced ALT and AST liver enzymes immediately following ischemia and 

throughout a 24 hour reperfusion. Consequently, a smaller percentage of 

damaged liver tissue was found in the MitoQ treatment group(30). The 

concentration of MitoQ used in this liver I/R model was similar to the doses of 

MitoQ used in our in vivo hind limb I/R and ex vivo myocardial I/R models, which 

showed that MitoQ can reduce blood H2O2 levels and infarct size, respectively, in 

I/R(99, 102). Antioxidants that are targeted specifically to mitochondria, 

especially those that work rapidly and achieve efficacy when administered upon 

reperfusion, may be useful clinically in reducing mitochondrial oxidative damage 

following the reperfusion of ischemic tissue. 

The effects of SS-31 on cardiac contractile function and infarct size in I/R 

 SS-31 (50 μM, P<0.01) administered at reperfusion also significantly 

restored postreperfused cardiac contractile function parameters, LVDP, dP/dtmax, 

and dP/dtmin, significantly compared to untreated I/R hearts. There was no 

statistical significance between SS-31 (25, 50, 100 μM) and untreated I/R hearts 

in the heart rate, coronary flow, LVESP, or LVEDP final values. Administration of 

SS-31 (25, 50, 100 μM; P<0.01) at reperfusion significantly reduced infarct size 

compared to untreated I/R hearts. Unexpectedly, the administration of the 25 and 
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100 μM doses of SS-31 at reperfusion did not have significant restoration in 

cardiac function compared to untreated I/R hearts, but there was a significant 

decrease in infarct size in these I/R hearts (P<0.01). This anomaly could 

potentially be attributed to reversible I/R-induced myocardial stunning. Reversibly 

stunned myocardium is mechanically arrhythmic but could possibly regain 

function at a later time. Dysfunction in viable cells could potentially be reversed, 

whereas infarction is irreversible. Therefore, it is possible that cardiac function 

could improve or decline at a time point beyond the time course recorded in this 

study. This anomaly is consistent with the findings of a study investigating the 

cardioprotective effects of Bendavia, an analogue of SS-31 and SS-02, in 

myocardial I/R. The study found that treatment with Bendavia reduced infarct 

size in guinea pig and sheep myocardial I/R models. However, there was no 

effect on left ventricular output or arrhythmia score compared to untreated I/R 

animals. It has been suggested that the surviving myocardium surrounding an 

infarct may remain stunned for days to weeks following I/R(95). This explanation 

may account for why the 25 and 100 µM doses of SS-31 did not significantly 

improve post-reperfused cardiac function despite significantly decreasing infarct 

size compared to untreated I/R controls(102). The results of the present study 

suggest that mitochondrial ROS may be a significant contributor to myocardial 

I/R injury, and inhibiting the release of mitochondrial ROS with selective 

mitochondria-targeted antioxidants attenuates myocardial I/R injury and may 

have a beneficial effect on subsequent cardiac contractile dysfunction. 
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The efficacy of SS-31 has been attributed to its ability to become 

selectively concentrated within mitochondria to scavenge ROS, whereas SS-20 

is targeted to mitochondria but unable to scavenge ROS because lacks a Dmt 

amino acid residue(18, 26, 103). Administration as a pretreatment followed by a 

second treatment at reperfusion with SS-31 (i.p.), similar in dosage to the SS-31 

that reduced blood H2O2 in an in vivo hind limb I/R model, was able to 

significantly reduce infarct size, ventricular arrhythmias, and lipid peroxidation in 

a rat myocardial I(60min)/R(60min) model in vivo(75, 99). A study using an ex 

vivo guinea pig global myocardial I(30min)/R(90) model showed SS-31 is able to 

prevent myocardial stunning when given throughout the experiment effectively, 

and these results were later obtained with an SS-31 analog using an in vivo 

myocardial I/R model(8, 73, 82, 104). The results from this study are unique in 

that SS-31 was administered exclusively at reperfusion and still able to improve 

infarct size and post-reperfused cardiac function; administration at the time of 

reperfusion may be more clinically relevant in cases of patients experiencing 

myocardial infarction(102). These results suggest that mitochondrial-derived 

ROS is a significant contributing factor to myocardial stunning, and reduction in 

mitochondrial ROS is cardioprotective. Similarly, SS-31 (2 mg/kg, i.p.) 

administered at reperfusion in a mouse cerebral I(30min)/R(72h) model 

significantly reduced infarct size compared to the untreated I/R brains(87, 105). 

The activity of tert-butyl hydroperoxide, known to induce mitochondrial 

depolarization and apoptosis by lipid peroxidation, was reduced in neuronal cell 

lines also treated with SS-31. SS-31 also exhibited ROS-scavenging activity in 
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the same neuronal cell lines(26). A subcuteaneous pretreatment, treatment at 

reperfusion, and post treatment with SS-31 in a rat kidney I(30-45min)/R(24h) 

model resulted in preserved mitochondrial structure and function as well as 

reduced oxidative stress and inflammation following I/R(18). In hepatocytes 

treated with hypochlorous acid, SS-31 was able to prevent cell death by inhibiting 

an increase in mitochondrial SO and mitochondrial depolarization(106). SS-31 

was also able to prevent an increase in mitochondrial SO due to induced shear 

stress in endothelial cells(107). SS-31 has also been effective in a chronic model 

of cardiac dysfunction by alleviating hypertensive cardiomyopathy. In the study, 

SS-31 was able to significantly reduce angiotensin II-induced mitochondrial 

oxidative stress, apoptosis signaling, and fibrosis(22). Furthermore, SS-31 is also 

able to promote the activity of mitochondrial respiration and synthesis of ATP in 

addition to its ability to scavenge ROS and attenuate ROS production and 

mitochondrial swelling(108, 109). 

Future Studies 

 To more clearly understand the role of mitochondrial-derived ROS in 

contributing to myocardial I/R injury, direct measurements of mitochondrial ROS 

at various I/R time points may allow clarification of the correlation between the 

amount of ROS release and tissue damage in myocardial I/R. These types of 

measurements may also quantify the efficacy of selectively mitochondrial-

targeted antioxidants in reducing mitochondrial ROS release. In a similar way, 

infarct size could be measured at more than one time point to confirm the ratio of 
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tissue death that occurs during the reperfusion phase to the ischemic phase of 

I/R. To supplement the infarct size data, histological staining for apoptosis 

markers may be useful to confirm areas of cell death. No sham hearts in this 

study were given SS-31 treatment, which may be a useful way to confirm 

whether or not SS-31 itself alters cardiac function independently from I/R. Other 

selectively mitochondrial-targeted antioxidants may also be used in a similar 

myocardial I/R model. Additionally, eNOS uncoupling has been shown to 

contribute to I/R injury by initiating endothelial dysfunction and increased ROS 

release within 5-10 min of reperfusion(52, 53). Measurements of the eNOS dimer 

to monomer ratio via western blotting of left ventricular tissue or high 

performance liquid chromatography to detect the BH4 to BH2 ratio may be useful 

in monitoring the degree of eNOS activity in myocardial I/R and understanding 

the relationship between endothelial dysfunction and myocardial I/R injury.  

 For more effective translation into the clinical setting, the cardioprotective 

effects of agents given at reperfusion need to be reproducible in multiple 

laboratories, models, and species. One of the limitations of the isolated perfused 

heart model is that there is a limited time course. Measurements of infarct size 

and cardiac function at time points 24 hours or longer may be better predictors of 

morbidity and mortality following acute myocardial infarction. I/R-induced 

myocardial stunning may mask the potential function of postreperfused cardiac 

tissue since stunning can be reversible. An in vivo regional I/R model could also 

be used to confirm the results of a global ischemia model and obtain 

measurements at later time points. Most studies of myocardial I/R use healthy, 



 

                                                                             

                                                                          
45 

 
juvenile animals without comorbid conditions or varying nutritional or hormonal 

status(5). Comorbid conditions, such as diabetes, hypertension, 

hypercholesterolemia, and left ventricular hypertrophy, are commonly found in 

the clinical setting and may impact the efficacy of cardioprotective 

interventions(5, 110, 111). Patients in the clinical setting may also have been 

exposed to transient periods of angina with a preconditioning effect, which can 

skew the interpretation of how much of the cardioprotective effect can be 

contributed to an intervention(5).  

Significance of Findings 

 Selectively mitochondrial-targeted antioxidants administered at the time of 

reperfusion in myocardial I/R exerted cardioprotective effects in this study. MitoQ 

and SS-31 infused with autologous plasma at the beginning of reperfusion both, 

independently, expeditiously and effectively restored postreperfused cardiac 

contractile function and reduced infarct size. The results of this study suggest 

that MitoQ and SS-31 may effectively reduce I/R injury during the treatment of 

myocardial infarction or heart transplantation in the clinical setting, thus allowing 

these patients to have a better quality of life attributable to better cardiac function 

and more viable cardiac tissue following ischemic events.  
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